Abstract:
Methods and systems for a high-density, low-cost, CMOS compatible memory may comprise a memory cell on a chip, the memory cell comprising: a plurality of capacitor/switch pairs, where for each pair comprising a switch and a capacitor, a source terminal of the switch is coupled to a gate terminal of the capacitor. The memory cell may also comprise a reset transistor, a biasing circuit, and a source follower. A drain terminal of each switch may be coupled to a floating node that couples a source terminal of the reset transistor and a gate terminal of the source follower. Drain and source terminals of each of the switches of the plurality of capacitor/switch pairs may be coupled to ground. A number of the plurality of capacitor/switch pairs may indicate a number of bits in the memory. The biasing circuit may comprise a current mirror. A bit-line for the memory cell may be coupled to a source terminal of the source follower. The bit-line may comprise a metal trace.
Abstract:
Methods and systems for improved matching for on-chip capacitors may comprise in a semiconductor die comprising an on-chip capacitor with one or more metal layers: electrically coupling a first set of metal fingers, electrically coupling a second set of metal fingers that are interdigitated with the first set of metal fingers, wherein the first set of metal fingers and the second set of metal fingers are arranged symmetrically in the semiconductor die, and configuring the on-chip capacitor in a plurality of symmetric sections, wherein a boundary between each of the plurality of sections is configured in a zig-zag pattern. The first set of metal fingers and the second set of metal fingers may be arranged with radial symmetry. A first set of metal fingers in a first metal layer may be electrically coupled to a set of metal fingers in a second metal layer.
Abstract:
Methods and systems for improved matching of on-chip capacitors may comprise a semiconductor die with an on-chip capacitor comprising one or more metal layers. The on-chip capacitor may comprise interdigitated electrically coupled metal fingers. The electrically coupled metal fingers may be arranged symmetrically in the semiconductor die to compensate for non-uniformities in the one or more metal layers. The metal fingers may be arranged with radial symmetry. Metal fingers in a first metal layer may be electrically coupled to metal fingers in a second metal layer. An orientation of metal fingers may be alternated when coupling metal fingers in a plurality of metal layers. The metal fingers may be coupled at the center or the outer edge of the on-chip capacitor. The on-chip capacitor may be configured in a plurality of symmetric sections wherein a boundary between each of the plurality of sections is configured in a zig-zag pattern.
Abstract:
Methods and systems for improved matching of on-chip capacitors may comprise a semiconductor die with an on-chip capacitor comprising one or more metal layers. The on-chip capacitor may comprise interdigitated electrically coupled metal fingers. The electrically coupled metal fingers may be arranged symmetrically in the semiconductor die to compensate for non-uniformities in the one or more metal layers. The metal fingers may be arranged with radial symmetry. Metal fingers in a first metal layer may be electrically coupled to metal fingers in a second metal layer. An orientation of metal fingers may be alternated when coupling metal fingers in a plurality of metal layers. The metal fingers may be coupled at the center or the outer edge of the on-chip capacitor. The on-chip capacitor may be configured in a plurality of symmetric sections wherein a boundary between each of the plurality of sections is configured in a zig-zag pattern.