Abstract:
A semiconductor structure is provided. The semiconductor structure includes a substrate, at least a first N-type germanium (Ge) structure and at least a first P-type Ge structure. The first N-type Ge structure is formed on the substrate and has two end parts and at least a first central part bonded between the two end parts thereof. The first central part is floated over the substrate, and a side surface of the first central part is a {111} Ge crystallographic surface. The first P-type Ge structure is formed on the substrate and has two end parts and at least a second central part bonded between the two end parts thereof. The side surface of the second central part is a {110} Ge crystallographic surface.
Abstract:
A bridge structure for use in a semiconductor device includes a semiconductor substrate and a semiconductor structure layer. The semiconductor structure layer is formed on a surface of the semiconductor substrate and a lattice difference is formed between the semiconductor structure layer and the semiconductor substrate. The semiconductor structure layer includes at least a first block, at least a second block and at least a third block, wherein the first block and the third block are bonded on the surface of the semiconductor substrate, the second block is floated over the semiconductor substrate and connected with the first block and the third block.
Abstract:
A germanium (Ge) structure includes a substrate, a Ge layer and at least a Ge spatial structure. The Ge layer is formed on the substrate, and a surface of the Ge layer is a Ge {110} lattice plane. The Ge spatial structure is formed in the Ge layer and includes a top surface and a sidewall surface, wherein the top surface is a Ge {110} lattice plane and the sidewall surface is perpendicular to the top surface. An axis is formed at a junction of the sidewall surface and the top surface, and an extensive direction of the axis is parallel to a Ge [112] lattice vector on the surface of the Ge layer, therefore the sidewall surface is a Ge {111} lattice plane. Because Ge {111} surface channels have very high electron mobility, this Ge spatial structure may be applied for fabricating high-performance Ge semiconductor devices.
Abstract:
A semiconductor structure is provided. The semiconductor structure includes a substrate, at least a first N-type germanium (Ge) structure and at least a first P-type Ge structure. The first N-type Ge structure is formed on the substrate and has two end parts and at least a first central part bonded between the two end parts thereof. The first central part is floated over the substrate, and a side surface of the first central part is a {111} Ge crystallographic surface. The first P-type Ge structure is formed on the substrate and has two end parts and at least a second central part bonded between the two end parts thereof. The side surface of the second central part is a {110} Ge crystallographic surface.