Abstract:
In one embodiment, a data generation method is for calculating a coverage of a polygon in each of a plurality of pixels obtained by dividing a target to be irradiated with a charged particle beam into predetermined sizes. The method includes dividing a parametric curve that defines a pattern shape into a plurality of parametric curves, calculating, for each of the plurality of parametric curves, an area of a region surrounded by a segment connecting end points among control points of the parametric curve and the parametric curve, calculating positions of vertexes of a figure having an area equivalent to the calculated area and having, as one side thereof, the segment connecting the end points, and generating the polygon by using the vertexes.
Abstract:
A charged particle beam drawing apparatus of an embodiment includes: a graphic information file for storing graphic information for each of elements (for example, patterns) at a level underlying an element (for example, a cell) at a particular level in hierarchically-structured drawing data which has elements at each level; and an attribute information file for storing attribute information to be given to each of the elements at the underlying level in association with information (for example, an index number) on the element at the particular level.
Abstract:
A drawing data examination method acquires coordinates representing the positions of a first control point group forming a B-spline curve; calculates a B-spline curve intersection ratio; converts the coordinates of the first control point group into the coordinates of a second control point group of a Bezier curve when the B-spline curve intersection ratio exceeds a threshold value, and determines whether the figure after the coordinate conversion has an intersection; and determines whether the figure of the drawing data has an intersection based on the first control point group when the B-spline curve intersection ratio is equal to or smaller than the threshold value, and converts the coordinates of the first control point group into the coordinates of the second control point group when the figure of the drawing data has an intersection, and determines whether the figure after the coordinate conversion has an intersection.
Abstract:
In one embodiment, a coverage calculating method is for calculating a coverage of a pattern in each of pixel regions obtained by dividing a writing region onto which the pattern is to be written by irradiation with a charged particle beam. Each of the pixel regions has a predetermined size. The method includes generating a plurality of first pixel regions by virtually dividing the writing region, the first pixel regions each having a first size, calculating a coverage of a pattern in the first pixel region, generating a plurality of second pixel regions by virtually dividing the first pixel region, the second pixel regions each having a second size smaller than the first size, selecting a second pixel region approximating a pattern shape in the first pixel region, and calculating a coverage in the selected second pixel region.
Abstract:
In one embodiment, a method of generating write data generates write data for a multi charged particle beam writing apparatus. The method includes dividing a polygonal figure included in design data into a plurality of figure segments including trapezoids each having a pair of parallel opposite sides extending in a first direction, the trapezoids being connected in a second direction orthogonal to the first direction such that adjacent trapezoids share the side extending in the first direction as a common side, and generates the write data including position information of a common vertex of a first trapezoid and a second trapezoid next to the first trapezoid expressed by a displacement in the first and second directions from a position of a common vertex of the second trapezoid and a third trapezoid next to the second trapezoid.
Abstract:
A writing data generating method for generating writing data used in a multi charged particle beam writing apparatus, that can suppress a data amount and a calculation amount in a multi charged particle beam writing apparatus generated from design data including a figure having a curve. The method includes calculating a pair of curves each representing a curve portion of a figure included in design data, the curves each being defined by a plurality of control points, and generating the writing data by expressing a position of a second control point adjacent in a traveling direction of the curve to a first control point of the plurality of control points as a displacement from the first control point in the traveling direction of the curve and a displacement from the first control point in a direction orthogonal to the traveling direction.
Abstract:
A method for generating writing data to be input to a writing apparatus, which writes a figure pattern on a target object by using a charged particle beam, includes generating the writing data, based on a data format that sequentially defines figure information on a figure pattern, and dose information which is defined before or after the figure information and indicates one of a dose and a dose modulation rate for modulating a dose, for a position of each of corner points of the figure pattern.
Abstract:
In one embodiment, a writing data verification method is for verifying a conversion error due to data conversion from first writing data in a vector format based on design data to second writing data in a pixel format. The method includes converting the second writing data to third writing data in a vector format, performing an exclusive OR operation on the first writing data and the third writing data, enlarging a graphic of the first writing data to obtain an enlarged graphic and generating a tolerance region graphic from a difference between the enlarged graphic and the graphic of the first writing data, and detecting a defect by performing a mask process on a graphic generated by the exclusive OR operation with the tolerance region graphic.
Abstract:
In one embodiment, a data processing method is provided for generating writing data from design data and registering the writing data in a charged particle beam writing apparatus. The method includes generating the writing data by performing a plurality of conversion processes on a plurality of pieces of first frame data obtained through division of the design data corresponding to one chip, and performing a plurality of preprocessing processes on a plurality of pieces of second frame data obtained through division of the writing data of the chip, and registering the writing data of the chip in the charged particle beam writing apparatus. The plurality of conversion processes are performed in frame-basis pipeline processing, and the plurality of preprocessing processes are performed in frame-basis pipeline processing. The writing data is registered in the charged particle beam writing apparatus on a frame basis.
Abstract:
In one embodiment, a generating method of drawing data includes generating a pixel map that includes dose amount information on each of pixels obtained by dividing a drawing area on an object into a mesh, extracting, from the pixel map, an island-shaped pixel map which is a group of multiple pixels in which the dose amount information is not zero, determining an order of definition of the dose amount information on the pixels in the island-shaped pixel map, and generating a compressed pixel map including a size of the pixels, information indicating the order of definition, coordinates of a pixel which is first in the order of definition in the island-shaped pixel map, and the dose amount information on the pixels in the island-shaped pixel map, the dose amount information being continuously defined based on the order of definition.