Abstract:
An electronic half-bridge ZETA converter may include a transformer, wherein a half-bridge is connected to the primary winding of transformer, and wherein a respective capacitance and a respective diode are associated with the half-bridge switches. Moreover, the converter includes a ZETA converter which is connected to secondary winding of transformer, so that the ZETA converter includes a first inductance, which includes the magnetization inductance of transformer, and a second inductance. Finally, the converter includes a control unit which drives the half-bridge switches with four time intervals that are repeated periodically. Specifically, during the fourth time interval the first and the second switch are opened, so that the capacitance associated with said second switch is charged and the capacitance associated with said first switch is discharged, enabling a zero voltage switching.
Abstract:
An electronic half-bridge converter includes an input comprising two terminals for receiving a first power signal, and an output comprising two terminals for providing a second power signal.The converter includes a transformer and a half-bridge, wherein the half-bridge is interposed between input and primary winding of transformer.On the secondary side of transformer, the converter includes a rectifier circuit configured for converting the current provided via secondary winding into a rectified current, and a filter circuit configured for providing said second power signal by means of a filtering of the rectified current provided by rectifier circuit.The filter circuit includes: a first branch connected between both input terminals of the filter circuit and comprising a first inductor and a first capacitor connected in series, and a second branch connected in parallel with the first branch and comprising a second inductor and the output connected in series.
Abstract:
An electronic converter, including a measurement circuit for determining a first signal indicative of the voltage or current supplied by the electronic converter, a regulation circuit for generating a regulation signal as a function of the first signal and one or more reference signals, and a driver circuit for driving the switching stage of the electronic converter as a function of the regulation signal. The electronic converter includes an optical, inductive or capacitive coupler and a transmission circuit configured to generate a pulse width modulated signal applied to the input of the optical, inductive or capacitive coupler, wherein the transmission circuit varies the duty cycle and the frequency of the pulse width modulated signal as a function of the first and second signal. The electronic converter includes a receiver circuit configured to monitor the received signal at the output of the optical, inductive or capacitive coupler.
Abstract:
Herein is disclosed an electronic converter, including a measurement circuit for determining a first signal indicative of the voltage or current supplied by the electronic converter, a regulation circuit for generating a regulation signal as a function of the first signal and one or more reference signals, and a driver circuit for driving the switching stage of the electronic converter as a function of the regulation signal.
Abstract:
An electronic converter includes two input terminals for receiving an AC voltage, two output terminals for providing a regulated voltage or current, a rectifier circuit and a boost converter. The boost converter receives at input, via positive and negative input terminals, the DC voltage generated via the rectifier circuit, and provides at output, via positive and negative output terminals, the regulated voltage or current. The boost converter includes an inductor and a diode connected in series between the positive input and output terminals. The boost converter further includes an electronic switch connected between the intermediate point between inductor and diode, and the ground, wherein a capacity is associated with the intermediate point between inductor and diode. The electronic converter further includes a control circuit to drive electronic switch with switching cycles including a first interval, wherein electronic switch is closed, and a second interval wherein electronic switch is opened.
Abstract:
An asymmetric electronic half-bridge converter includes a positive input terminal and a negative input terminal for receiving a DC voltage, and two output terminals for providing a regulated output voltage or a regulated output current. The electronic converter moreover includes a half-bridge, a transformer and a rectification and filter circuit. The half-bridge includes a first and second electronic switch, connected in series between the two input terminals, wherein a respective capacitance and a respective diode are associated with the first and second electronic switch. A first terminal of the primary winding is connected to the intermediate point between the first and second electronic switch, and a second terminal of the primary winding is connected via a first capacitor to the positive or negative input terminal. The rectification and filter circuit is connected between the secondary winding and the output terminals.
Abstract:
Herein is disclosed an electronic converter, including a measurement circuit for determining a first signal indicative of the voltage or current supplied by the electronic converter, a regulation circuit for generating a regulation signal as a function of the first signal and one or more reference signals, and a driver circuit for driving the switching stage of the electronic converter as a function of the regulation signal.
Abstract:
An electronic converter may include transformer with a primary winding and a secondary winding, wherein the primary winding is coupled to an input for receiving a power signal, and wherein the secondary winding is coupled to an output including a positive terminal and a negative terminal for providing a power signal. The converter moreover may include an electronic switch arranged between the input and the primary winding, wherein the electronic switch is configured to control the current flow through the primary winding. Specifically, the converter may include a snubber circuit arranged between the secondary winding and the output.
Abstract:
An electronic half-bridge converter includes an input comprising two terminals for receiving a first power signal, and an output comprising two terminals for providing a second power signal.The converter includes a transformer and a half-bridge, wherein the half-bridge is interposed between input and primary winding of transformer.On the secondary side of transformer, the converter includes a rectifier circuit configured for converting the current provided via secondary winding into a rectified current, and a filter circuit configured for providing said second power signal by means of a filtering of the rectified current provided by rectifier circuit.The filter circuit includes: a first branch connected between both input terminals of the filter circuit and comprising a first inductor and a first capacitor connected in series, and a second branch connected in parallel with the first branch and comprising a second inductor and the output connected in series.
Abstract:
An electronic converter comprising an input comprising two terminals for receiving a first power signal, and an output comprising two terminals for providing a second power signal. On the primary side, the converter comprises a half-bridge, a transformer and a first capacitor. Specifically, the first capacitor and the primary winding of the transformer are connected in series between the intermediate point of the half-bridge and an input terminal. On the secondary side, the converter comprises a diode, a second capacitor and an inductor. The second capacitor and the secondary winding of the transformer are connected in series between the cathode and anode of the diode, and the inductor and the output are connected in series between the cathode and the anode of the diode. The electronic converter comprises a third capacitor and at least one electronic switch adapted to selectively connect the third capacitor in parallel with the second capacitor.