Abstract:
An optoelectronic device, in particular an at least partially transparent pane for example of a vehicle, comprises a first layer, in particular an intermediate layer arranged between a cover layer and a carrier layer, at least one electronic or optoelectronic component, which is at least partially or completely embedded in the first layer and at least one structured conductor layer. A first portion of the conductor layer is arranged on an upper surface of the first layer and a second portion of the conductor layer is arranged on a top surface of the electronic or optoelectronic component and is in contact with an electric contact of the electronic or optoelectronic component. The electric contact, in particular a contact pad, is arranged on the top surface.
Abstract:
An optoelectronic device comprises a plurality of optoelectronic light sources being arranged on a first layer, in particular an intermediate layer being arranged between a cover layer and a carrier layer. The first layer comprises or consists of an at least partially transparent material and each optoelectronic light source of the plurality of optoelectronic light sources comprises an individual light converter for converting light emitted by the associated light source into converted light. The light converter of each optoelectronic light source is arranged on the first layer and/or the associated optoelectronic light source.
Abstract:
A glazing comprising a luminous means with a substrate having a first main surface, to which a first electrode is applied, a second electrode, and an organic layer stack within an active region of the substrate between the first and the second electrode, wherein the organic layer stack comprises at least one organic layer which is suitable for generating light, wherein the luminous means is arranged between two glass plates of the glazing of a window. Also, storage furniture is disclosed comprising a storage element shaped in planar fashion and having at least one storage surface and at least one radiation-emitting component, and at least one holding apparatus for holding the storage element.
Abstract:
An optoelectronic device, in particular an at least semi-transparent pane for example for a vehicle, comprises: a cover layer, a carrier layer, an intermediate layer between the cover layer and the carrier layer, wherein at least one and preferably a plurality of optoelectronic light sources, in particular μLEDS, is arranged on at least one surface of the intermediate layer and/or is at least partially embedded in the intermediate layer, wherein the intermediate layer is adapted such that light emitted by the optoelectronic light sources at least partially spreads in and along the intermediate layer and exits the intermediate layer within and/or at a pre-set distance to the respective optoelectronic light source in a direction through the cover layer and/or through the carrier layer.
Abstract:
An organic luminous means and an illumination device comprising such a luminous means are specified. An optical display apparatus, emergency lighting, motor vehicle interior lighting, an item of furniture, a construction material, a glazing and a display comprising such a luminous means and, respectively, comprising an illumination device having such a luminous means are furthermore specified.
Abstract:
A light-emitting device includes a first electrode area on a substrate and a functional light-emitting layer on the first electrode area. A second electrode area is disposed on the functional light-emitting layer. A light outlet layer is disposed in a radiation path of the functional light-emitting layer. The light outlet layer incorporates a number of optical elements whose distribution and/or geometrical shape vary across a surface of the light outlet layer.
Abstract:
An electroluminescent organic semiconductor element includes a substrate and a first electrode arranged on the substrate. The semiconductor element additionally contains a second electrode and at least one organic layer, which is arranged between the first electrode and the second electrode. The organic layer is a layer that generates light by recombination of charge carriers. At least one of the first and the second electrode contains a highly conductive organic sublayer.
Abstract:
An organic luminous means and an illumination device comprising such a luminous means are specified. An optical display apparatus, emergency lighting, motor vehicle interior lighting, an item of furniture, a construction material, a glazing and a display comprising such a luminous means and, respectively, comprising an illumination device having such a luminous means are furthermore specified.
Abstract:
An organic luminous means and an illumination device comprising such a luminous means are specified. An optical display apparatus, emergency lighting, motor vehicle interior lighting, an item of furniture, a construction material, a glazing and a display comprising such a luminous means and, respectively, comprising an illumination device having such a luminous means are furthermore specified.
Abstract:
A light-emitting device includes a first electrode area on a substrate and a functional light-emitting layer on the first electrode area. A second electrode area is disposed on the functional light-emitting layer. A light outlet layer is disposed in a radiation path of the functional light-emitting layer. The light outlet layer incorporates a number of optical elements whose distribution and/or geometrical shape vary across a surface of the light outlet layer.