Abstract:
A radiation-emitting semiconductor chip includes a semiconductor body with a semiconductor layer sequence, wherein the semiconductor body with the semiconductor layer sequence extends in a vertical direction between a first major face and a second major face; the semiconductor layer sequence includes an active region that generates radiation, a first region of a first conduction type and a second region of a second conduction type differing from the first conduction type; the first region extends in a vertical direction between the first major face and the active region; the second region extends in a vertical direction between the second major face and the active region; at least one layer of the active region is based on an arsenide compound semiconductor material; and relative to its respective extent in the vertical direction, the first region or the second region is based in a proportion of at least half on a phosphide compound semiconductor material.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer that generates an electromagnetic radiation and a light exit side, and a light coupling-out layer applied to the light exit side, wherein the light coupling-out layer includes of radiation-inactive nanocrystals composed of a material transmissive to the radiation generated, and a refractive index of the radiation-transmissive material for the radiation is at least 1.9.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer that generates an electromagnetic radiation and a light exit side, and a light coupling-out layer applied to the light exit side, wherein the light coupling-out layer includes of radiation-inactive nanocrystals composed of a material transmissive to the radiation generated, and a refractive index of the radiation-transmissive material for the radiation is at least 1.9.