Abstract:
A bimorph structure is produced by depositing a first material on a first surface of a first substrate to form a first element structure. A second material is deposited onto a surface of a second substrate to form a second element structure. Electrodes are deposited on a surface of each of the first element structure and the second element structure. The first element structure is bonded to a first transfer substrate, and the second element structure is bonded to a second transfer substrate. The first substrate is removed from the first element structure, and the second substrate is removed from the second element structure. Second side electrodes are deposited on a second surface of each of the first element structures and the second element structure. The first element structure and the second element structure are directly bonded to each other. One of the first transfer substrate and the second transfer substrate is then removed, and the surface of the element structure from which one of the transfer substrates has been removed is bonded to a final target substrate. Thereafter, the other transfer substrate is removed, and electrical connections are made. In a further embodiment, a micro-electromechanical dimensioned bimorph structure includes a first element structure, and a second element structure. A bonding layer bonds the first element structure directly to the second element structure.
Abstract:
A method of producing at least one piezoelectric element includes depositing a piezoelectric ceramic material onto a surface of a first substrate to form at least one piezoelectric element structure. Then an electrode is deposited on a surface of the at least one piezoelectric element structure. Next, the at least one piezoelectric element structure is bonded to a second substrate, the second substrate being conductive or having a conductive layer. The first substrate is then removed from the at least one piezoelectric element structure and a second side electrode is deposited on a second surface of the at least one piezoelectric element structure. A poling operation is performed to provide the at least one piezoelectric element structure with piezoelectric characteristics. In another embodiment, a material for a thick film element is deposited onto a surface of a first substrate to form a thick film element structure having a thickness of between greater than 10 nullm to 100 nullm. The at least one thick film element structure is bonded to a second substrate. Thereafter, the first substrate is removed from the at least one thick film element structure using a liftoff process which includes emitting, from a radiation source (such as a laser or other appropriate device), a beam through the first substrate to an attachment interface formed between the first substrate and the at least one thick film element structure at the surface of the first substrate. The first substrate is substantially transparent at the wavelength of the beam, and the beam generates sufficient energy at the interface to break the attachment.
Abstract:
A method of forming an integrated microelectronic device and a micro channel is provided. The method offers an inexpensive way of integrating devices that are usually incompatible during fabrication, a microchannel and a microelectronic structure such as an electro-optic light source, a detector or a MEMs device into a single integrated structure.
Abstract:
Printing systems are disclosed that produce homogenous, smooth edged printed patterns (such as integrated circuit (IC) patterns) by separating pattern layouts into discrete design layers having only parallel layout features. By printing each design layer in a printing direction aligned with the parallel layout features, the individual print solution droplets deposited onto the substrate do not dry before adjacent droplets are deposited. Therefore, printed patterns having accurate geometries and consistent electrical properties can be printed.
Abstract:
Printing systems are disclosed that produce homogenous, smooth edged printed patterns (such as integrated circuit (IC) patterns) by separating pattern layouts into discrete design layers having only parallel layout features. By printing each design layer in a printing direction aligned with the parallel layout features, the individual print solution droplets deposited onto the substrate do not dry before adjacent droplets are deposited. Therefore, printed patterns having accurate geometries and consistent electrical properties can be printed.
Abstract:
A flexible detection/test tape includes a first flexible conductive layer, and a second flexible conductive layer positioned opposite the first conductive layer. A plurality of at least one of sensors, actuators or transducers are positioned between and are bonded to the first flexible conductive layer and the second flexible conductive layer. An insulative material is inserted around the plurality of at least one of the sensors, actuators or transducers. An electrical contact network connects to the first flexible conductive layer and the second flexible conductive layer, whereby power and control signals are provided to the flexible detection/test tape. In an alternative embodiment, a method for producing a detection/test tape includes depositing a material onto a surface of at least one first substrate to form a plurality of element structures. Electrodes are deposited on a surface of each of the plurality of element structures, and the element structures are bonded to a second substrate, where the second substrate is conductive or has a conductive layer, and the second substrate is carried on a carrier plate. The at least one first substrate is removed from the element structures and second side electrodes are deposited on a second surface of each of the plurality of element structures. An insulative material is inserted around the element structures to electrically isolate the two substrates used to bond the element structures. A second side of the element structures is then bonded to another substrate, where the other substrate is conductive or has a conductive layer. Thereafter, the carrier plate carrying the second substrate is removed.