Abstract:
A thermoelectric generator unit according to this disclosure includes a plurality of tubular thermoelectric generators, each of which generates electromotive force based on a difference in temperature between the inner and outer peripheral surfaces. The unit further includes a plurality of electrically conductive members providing electrical connection for the generators and a container housing the generators inside. The container includes a shell surrounding the generators and a pair of plates, at least one of which has a plurality of openings and channels. Each channel houses an electrically conductive member. The generators are electrically connected together in series via the electrically conductive member. At least one of the channels has an interconnection which connects at least two of the openings together and a testing hole portion. The testing hole portion runs from the interconnection through an outer edge of the at least one plate.
Abstract:
A terahertz electromagnetic wave generator according to the present disclosure includes: a substrate; a thermoelectric material layer which is supported by the substrate and which has a surface; and a pulsed laser light source system which locally heats the thermoelectric material layer with an edge of the surface of the thermoelectric material layer irradiated with pulsed light, thereby generating a terahertz electromagnetic wave from the thermoelectric material layer.
Abstract:
A terahertz electromagnetic wave generator according to the present disclosure includes: a thermoelectric material layer; and a light source system which is configured to irradiate the thermoelectric material layer with pulsed light and generate a terahertz wave from the thermoelectric material layer. The thermoelectric material layer includes a gradient portion in which transmittance of the pulsed light varies in a certain direction. And the light source system is configured to irradiate the gradient portion of the thermoelectric material layer with the pulsed light.
Abstract:
A terahertz electromagnetic wave generator according to the present disclosure includes: a thermoelectric material layer; a metal layer which partially covers the surface of the thermoelectric material layer; and a light source system which is configured to irradiate both a surface region of the thermoelectric material layer that is not covered with the metal layer and an edge of the metal layer with pulsed light, thereby generating a terahertz wave from the thermoelectric material layer.
Abstract:
The present invention provides a methanol generation device for generating methanol by reducing carbon dioxide, comprising: a container for storing an electrolyte solution containing carbon dioxide; a cathode electrode disposed in the container so as to be in contact with the electrolyte solution; an anode electrode disposed in the container so as to be in contact with the electrolyte solution; and an external power supply for applying a voltage so that a potential of the cathode electrode is negative with respect to a potential of the anode electrode. The cathode electrode has a region of Cu1-x-yNixAuy (0
Abstract:
A thermoelectric generation unit according to the present disclosure includes a plurality of thermoelectric generation tubes. Each thermoelectric generation tube generates an electromotive force in an axial direction based on a temperature difference between its inner peripheral surface and outer peripheral surface. The thermoelectric generation unit includes a container housing the plurality of thermoelectric generation tubes inside, a plurality of electrically conductive members providing electrical interconnection for the plurality of thermoelectric generation tubes, and a plurality of electrically conductive ring members each receiving an end of a thermoelectric generation tube so as to be in contact with the outer peripheral surface of the thermoelectric generation tube. Each electrically conductive ring member electrically connects the thermoelectric generation tube to a corresponding electrically conductive member.
Abstract:
An exemplary thermoelectric generator unit according to the present disclosure includes a plurality of tubular thermoelectric generators. Each generator generates electromotive force in an axial direction based on a difference in temperature between its inner and outer peripheral surfaces. The unit further includes a container housing the generators inside and a plurality of electrically conductive members providing electrical interconnection among the generators. The container has fluid inlet and outlet ports through which a fluid flows inside the container, and a plurality of openings into which the respective generators are inserted. In one implementation, the unit includes a baffle, which is provided between the fluid inlet port and the generators and changes the flow direction of the fluid that has flowed into the container through the fluid inlet port.
Abstract:
The thermoelectric generator disclosed herein includes: a first and second electrode opposing each other; and a stacked body having a first and second principal face and a first and second end face, the first and second end face being located between the first and second principal face, and the first and second electrode being respectively electrically connected to the first and second end face. The stacked body is structured so that a plurality of first layers of a first material having a relatively low Seebeck coefficient and a relatively high thermal conductivity and a plurality of second layers of a second material having a relatively high Seebeck coefficient and a relatively low thermal conductivity are alternately stacked. The stacked body includes a carbon containing layer in at least one of the first and second principal face.
Abstract:
A thermoelectric generator system according to this disclosure includes a thermoelectric generator unit which performs thermoelectric generation using first and second heat transfer media at different temperatures. The unit includes a tubular thermoelectric generator which generates electromotive force in its axial direction based on a temperature difference between its inner and outer surfaces. The generator system further includes a flow rate control system which controls the flow rate of at least one of the first heat transfer medium flowing through a flow path defined by the inner surface and the second heat transfer medium in contact with the outer surface by reference to either information about an operation condition of the generator system or a preset target power output level.