Abstract:
The invention relates to a solid fuel stove comprising a combustion chamber (12) for containing combustion fuel and a blower assembly (50) configured to provide airflow entering the combustion chamber in operating condition. When guiding means (40) establish airflow entering the combustion chamber substantially in a downwardly direction the combustion process of the stove is very clean and efficient.
Abstract:
A method is proposed for measuring water permeability of substrates (1). A reactive compound (Ca, Ba) which reacts with a diffusing material, e.g. water, is applied on the substrate and the change in time of transmissivity, reflectivity of the layer is monitored in time.
Abstract:
A solid fuel, portable stove reduces smoke emissions and provides for a high temperature of combustion in a compact and easily manufacturable design. A main housing (11) comprises a combustion chamber (12) for containing fuel for combustion and a fan (50) configured to force air into the combustion chamber. A rechargeable electrical power source (40) is used for driving the fan (50) and a thermoelectric (31) provides power to the fan and to the rechargeable power source. In one embodiment, the thermoelectric element also provides excess output power to a connected device (D) such as a low voltage white light emitting diode, thereby providing a self illuminating, rechargeable stove which is suitable for sunset or early evening cooking.
Abstract:
The invention relates to a switching device having shorter switching times. The device comprises a switchable layer (3), which is switched between a reflecting and an absorbing state by changing a hydrogen content of the switchable layer (3). Applying a DC voltage on electroconductive layers (11, 13) changes the hydrogen content. These electroconductive layers (11, 13) sandwich a stack of layers comprising the switchable layer (3) and a hydrogen storage layer (9). The hydrogen storage layer comprises essentially the same compounds as the switchable layer (3), viz. LMgHx and preferably GdMgHx. The storage layer may be made thin, leading to relatively short hydrogen transportation times and a relatively fast display. The device may be further improved by applying a scattering foil.
Abstract:
A furnace (1) for Rapid Thermal Processing of a wafer (7), characterized in that the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is absorbed by the switching device (15,17), which is in the heat-absorbing state. The switching device comprises a switching film of a trivalent metal, such as gadolinium, which is capable of forming hydrides by an exchange of hydrogen. Dependent on the hydrogen concentration of the hydrides, the film reflects or absorbs heat. The hydrogen content in the switching film can be changed by varying the partial pressure of hydrogen, or, preferably, by varying the potential of the switching film forming part of a stack of layers in an electrochemical cell.
Abstract:
In the case of simultaneous diffraction and fluorescence measurements in an apparatus for X-ray analysis comprising only one X-ray tube, a problem is encountered in that due to the presence of the collimators required for the fluorescence measurements only a very low X-ray power reaches the detectors, so that very long measuring times and/or an unfavorable signal-to-noise ratio occur. As a result, the detection limit for given measurements (low concentration of an element and/or light elements to be detected) becomes too high or the use of a (large and expensive) high-power X-ray tube is required. The invention utilizes a line focus tube 10 in combination with a single-slit collimator 14 for irradiating the sample 2, the fluorescence section 40 being constructed so as to have a plane or cylindrical analysis crystal 42 in combination with a location-sensitive detector 44. The diffraction measurements are performed by means of a conventional diffraction arrangement 24.
Abstract:
There is provided a method of improving the yield of a nozzle plate fabrication process, the method comprising determining a variation in the size of nozzles in a nozzle plate from a predetermined size or range of sizes for the nozzles, the nozzles in the nozzle plate having been fabricated using a plurality of mandrels, each mandrel defining a respective nozzle in the nozzle plate and determining modifications to the size of one or more mandrels in the plurality of mandrels to compensate for the determined variation in the size of nozzles in the nozzle plate. Also provided is a method of fabricating a nozzle plate, the method comprising fabricating a nozzle plate having a plurality of nozzles using a plurality of mandrels on a substrate, each mandrel defining a respective nozzle in the nozzle plate, the mandrels in the plurality of mandrels having varying sizes in order to compensate for local variations in the fabrication process that would result in local variations in the size of nozzles in the nozzle plate from a predetermined size or range of sizes.
Abstract:
There is provided a control unit for controlling the operation of a nebulizer, the nebulizer comprising a reservoir chamber for storing a liquid to be nebulised, an actuator, and a nebulizing element comprising a plurality of nozzles arranged to nebulize the liquid upon operation of the actuator; wherein the control unit is configured to obtain an indication of the size of the nozzles in the nebulizing element; and control the operation of the actuator based on the obtained indication to provide nebulised liquid at a required output rate and/or with droplets of a required size.
Abstract:
Skin monitoring device for application near the skin, comprising a processing circuit connecting means and at least one photosensor configured to detect at least one approximate wavelength of light reflected and/or emitted by the skin, wherein a signal receiving circuit is provided for receiving signals from the at least one photosensor.
Abstract:
The invention relates to a switching mirror display having an increased aperture. The display comprises pixel elements (20) having a switchable layer (3), which is switched between a reflecting and an absorbing state by changing a hydrogen content of the switchable layer (3). Applying a DC voltage on electroconductive layers (11, 13) changes the hydrogen content. These electroconductive layers (11, 13) sandwich a stack of layers comprising the switchable layer (3), which stack has been deposited on a transparent substrate (1). The display is being viewed from a side (24) of the substrate on which the stack is deposited. The pixel element (20) is driven by an active matrix element (22). The switchable layer (3) extends across the active matrix element (22) and conceals this element. This increases the aperture of the display.