Metabolite Biomarkers For Forecasting The Outcome of Preoperative Chemotherapy For Breast Cancer Treatment
    3.
    发明申请
    Metabolite Biomarkers For Forecasting The Outcome of Preoperative Chemotherapy For Breast Cancer Treatment 审中-公开
    代谢产物生物标志物用于预测乳腺癌术前化疗的结果

    公开(公告)号:US20140162903A1

    公开(公告)日:2014-06-12

    申请号:US14068923

    申请日:2013-10-31

    CPC classification number: G01N33/57415 G01N2405/00 G01N2405/04 G01N2560/00

    Abstract: The present disclosure relates to a panel of metabolite species that is useful for forecasting the outcome of preoperative chemotherapy for the treatment of breast cancer, including methods for identifying and using such metabolite species that can be measured in biological samples taken before treatment. In preferred embodiments, a method of forecasting a treatment outcome before subjecting a breast cancer patient to preoperative chemotherapy is disclosed that includes measuring the concentration of at least one metabolite species in a sample of a biofluid taken from the breast cancer patient before preoperative chemotherapy treatment.

    Abstract translation: 本公开涉及可用于预测用于治疗乳腺癌的术前化学疗法的结果的代谢物种类的一组,包括用于鉴定和使用可在治疗前采集的生物样品中测量的此类代谢物种的方法。 在优选实施方案中,公开了一种在对乳腺癌患者进行术前化学疗法之前预测治疗结果的方法,其包括测量在术前化学治疗之前从乳腺癌患者获取的生物流体样品中至少一种代谢物种的浓度。

    EARLY DETECTION OF RECURRENT BREAST CANCER USING METABOLITE PROFILING
    4.
    发明申请
    EARLY DETECTION OF RECURRENT BREAST CANCER USING METABOLITE PROFILING 审中-公开
    使用代谢物分析早期检测乳腺癌

    公开(公告)号:US20130023056A1

    公开(公告)日:2013-01-24

    申请号:US13624042

    申请日:2012-09-21

    Abstract: A monitoring test for recurrent breast cancer with a high degree of sensitivity and specificity is provided that detects the presence of a panel of multiplicity of biomarkers that were identified using metabolite profiling methods. The test is capable of detecting breast cancer recurrence about a years earlier than current available monitoring diagnostic tests. The panel of biomarkers is identified using a combination of nuclear magnetic resonance (NMR) and two dimensional gas chromatography-mass spectrometry (GC×GC-MS) to produce the metabolite profiles of serum samples. The NMR and GC×GC-MS data are analyzed by multivariate statistical methods to compare identified metabolite signals between samples from patients with recurrence of breast cancer and those from patients having no evidence of disease.

    Abstract translation: 提供了具有高度灵敏度和特异性的复发性乳腺癌的监测测试,其检测使用代谢物分析方法鉴定的多组生物标志物的存在。 该测试能够比当前可用的监测诊断测试早一年检测乳腺癌复发。 使用核磁共振(NMR)和二维气相色谱 - 质谱(GC×GC-MS)的组合鉴定生物标志物组,以产生血清样品的代谢物谱。 通过多变量统计学方法分析NMR和GC×GC-MS数据,以比较乳腺癌复发患者和无疾病证据患者的样本之间的鉴定代谢信号。

    Metabolite Biomarkers for the Detection of Esophageal Cancer Using NMR
    5.
    发明申请
    Metabolite Biomarkers for the Detection of Esophageal Cancer Using NMR 审中-公开
    使用NMR检测食管癌的代谢物生物标志物

    公开(公告)号:US20160363560A9

    公开(公告)日:2016-12-15

    申请号:US14167270

    申请日:2014-01-29

    CPC classification number: G01N27/74 G01N33/57488 G01N2570/00

    Abstract: Methods for the detection and screening of esophageal adenocarcinoma (EAC) patients and for the monitoring of EAC treatment using a panel or panels of small molecule metabolite biomarkers are disclosed. In other aspects, methods for detection and screening for the progression of high-risk conditions (BE and HGD) to EAC and to monitoring treatment using a panel or panels of small molecule metabolite biomarkers are disclosed. The biomarkers are sensitive and specific for the detection of EAC, and can also be used to classify Barrett's esophagus (BE) and high-grade dysplasia (HGD), which are widely regarded as precursors of EAC.

    Abstract translation: 公开了使用小分子代谢物生物标志物的小组或小组检测和筛选食管腺癌(EAC)患者和用于监测EAC治疗的方法。 在其他方面,公开了用于检测和筛选高危条件(BE和HGD)进展到EAC以及使用小分子代谢物生物标志物的小组或小组进行监测的方法。 生物标志物对EAC的检测敏感且特异,也可用于对Barrett食管(BE)和高度发育异常(HGD)进行分类,被广泛认为是EAC的前体。

    Metabolite Biomarkers for the Detection of Esophageal Cancer Using NMR
    6.
    发明申请
    Metabolite Biomarkers for the Detection of Esophageal Cancer Using NMR 审中-公开
    使用NMR检测食管癌的代谢物生物标志物

    公开(公告)号:US20140148349A1

    公开(公告)日:2014-05-29

    申请号:US14167270

    申请日:2014-01-29

    CPC classification number: G01N27/74 G01N33/57488 G01N2570/00

    Abstract: Methods for the detection and screening of esophageal adenocarcinoma (EAC) patients and for the monitoring of EAC treatment using a panel or panels of small molecule metabolite biomarkers are disclosed. In other aspects, methods for detection and screening for the progression of high-risk conditions (BE and HGD) to EAC and to monitoring treatment using a panel or panels of small molecule metabolite biomarkers are disclosed. The biomarkers are sensitive and specific for the detection of EAC, and can also be used to classify Barrett's esophagus (BE) and high-grade dysplasia (HGD), which are widely regarded as precursors of EAC.

    Abstract translation: 公开了使用小分子代谢物生物标志物的小组或小组检测和筛选食管腺癌(EAC)患者和用于监测EAC治疗的方法。 在其他方面,公开了用于检测和筛选高危条件(BE和HGD)进展到EAC以及使用小分子代谢物生物标志物的小组或小组进行监测的方法。 生物标志物对EAC的检测敏感且特异,也可用于对Barrett食管(BE)和高度发育异常(HGD)进行分类,被广泛认为是EAC的前体。

    Combined Spectroscopic Method for Rapid Differentiation of Biological Samples
    7.
    发明申请
    Combined Spectroscopic Method for Rapid Differentiation of Biological Samples 审中-公开
    用于生物样品快速分化的组合光谱法

    公开(公告)号:US20130282300A1

    公开(公告)日:2013-10-24

    申请号:US13918796

    申请日:2013-06-14

    CPC classification number: H01J49/0036 G01R33/465 H01J49/145 H01J49/165

    Abstract: A method for differentiating complex biological samples, each sample having one or more metabolite species. The method comprises producing a mass spectrum by subjecting the sample to a mass spectrometry analysis, the mass spectrum containing individual spectral peaks representative of the one or more metabolite species contained within the sample; subjecting the individual spectral peaks of the mass spectrum to a statistical pattern recognition analysis; identifying the one or more metabolite species contained within the sample by analyzing the individual spectral peaks of the mass spectrum; and assigning the sample into a defined sample class.

    Abstract translation: 用于区分复杂生物样品的方法,每个样品具有一种或多种代谢物种。 该方法包括通过对样品进行质谱分析来产生质谱,所述质谱包含代表样品中所含的一种或多种代谢物种类的各个光谱峰; 对质谱的各个光谱峰进行统计模式识别分析; 通过分析质谱的各个光谱峰来识别样品中所含的一种或多种代谢物; 并将样本分配到定义的样本类中。

Patent Agency Ranking