Abstract:
A semiconductor device according to some examples of the disclosure may include a package substrate, a semiconductor die coupled to one side of the package substrate with a first set of contacts on an active side of the semiconductor die and coupled to a plurality of solder prints with a second set of contacts on a back side of the semiconductor die. The semiconductor die may include a plurality of vias connecting the first set of contacts to the second set of contacts and configured to allow heat to be transferred from the active side of the die to the plurality of solder prints for a shorter heat dissipation path.
Abstract:
In conventional device packages, separate standalone inductors are provided and mounted on an interposer substrate along with a die. Separate inductors reduce integration density, decrease flexibility, increase footprint, and generally increase costs. To address such disadvantages, it is proposed to provide a part of an inductor in a substrate below a die. The proposed stacked substrate inductor may include a first inductor in a first substrate, a second inductor in a second a second substrate stacked on the first substrate, and an inductor interconnect coupling the first and second inductors. The core regions of the first and second inductors may overlap with each other at least partially. The proposed stacked substrate inductor may enhance integration density, increase flexibility, decrease footprint, and/or reduce costs.
Abstract:
Systems and methods relate to a semiconductor package comprising a first substrate or a 2D passive-on-glass (POG) structure with a passive component and a first set of one or more package pads formed on a face of a glass substrate. The semiconductor package also includes a second or laminate substrate with a second set of one or more package pads formed on a face of the second or laminate substrate. Solder balls are dropped, configured to contact the first set of one or more package pads with the second set of one or more package pads, wherein the first substrate or the 2D POG structure is placed face-up on the face of the second or laminate substrate. A printed circuit board (PCB) can be coupled to a bottom side of the second or laminate substrate.
Abstract:
Ground shielding is achieved by a conductor shield having conductive surfaces that immediately surround individual chips within a multichip module or device, such as a multichip module or device with flip-chip (FC) bumps. Intra-module shielding between individual chips within the multichip module or device is achieved by electromagnetic or radio-signal (RF) isolation provided by the surfaces of the conductor shield immediately surrounding each of the chips. The conductor shield is directly connected to one or more grounded conductor portions of a substrate or interposer to ensure reliable grounding.
Abstract:
A 3D nested transformer includes a substrate having a set of through substrate vias daisy chained together with a set of traces. At least some of the through substrate vias have first and second conductive regions. The set of traces also includes a first set of traces coupling together at least some of the first conductive regions of the through substrate vias, and a second set of traces coupling together at least some of the second conductive regions of the through substrate vias.
Abstract:
An interposer for a chipset includes multilayer thin film capacitors incorporated therein to reduce parasitic inductance in the chipset. Power and ground terminals are laid out in a staggered pattern to cancel magnetic fields between conductive vias to reduce equivalent series inductance (ESL).
Abstract:
An exemplary improved ground for a power amplifier circuit may include structural separation of the drive amplifier and the power amplifier grounds and cut-off of the power amplifier induced feedback current to ensure stability under a wide-range of operating conditions. The exemplary power amplifier may include a first ground coupled to a first amplifier circuit, a second ground coupled to a second amplifier circuit separate from the first ground, and the first amplifier circuit generates a drive current for the second amplifier circuit.
Abstract:
In exemplary aspects of the disclosure, magnetic coupling problems in a power amplifier/antenna circuit may be address by using a self-shielded RF inductor mounted over the PA output match inductor embedded in the substrate to offer full RF isolation of both PA output match inductors (self-shielded and embedded) or using a self-shielded RF inductor mounted over the PA output match inductor embedded in the substrate along with a component level conformal shield around the self-shielded inductor on the assembly structure.
Abstract:
The present disclosure provides integrated circuit apparatuses and methods for manufacturing integrated circuit apparatuses. An integrated circuit apparatus may include a first insulator, the first insulator being substantially planar and having a first top surface and a first bottom surface opposite the first top surface, a first conductor disposed on the first insulator, a second insulator, the second insulator being substantially planar and having a second top surface and a second bottom surface opposite the second top surface, a second conductor disposed on the second insulator, and a dielectric layer disposed between the first bottom conductor of the first insulator and the second top conductor of the second insulator.
Abstract:
A thin film magnet (TFM) three-dimensional (3D) inductor structure may include a substrate with conductive vias extending through the substrate. The TFM 3D inductor structure may also include a magnetic thin film layer on at least sidewalls of the conductive vias and on a first side and an opposing second side of the substrate. The TFM 3D inductor structure may further include a first conductive trace directly on the magnetic thin film layer on the first side of the substrate and electrically coupling to at least one of the conductive vias. The TFM 3D inductor structure also includes a second conductive trace directly on the magnetic thin film layer on the second side of the substrate and coupled to at least one of the conductive vias.