Abstract:
This disclosure provides systems, methods, and apparatus related to electromechanical systems display devices. In one aspect, an apparatus includes a display assembly, a sensor, and a processor. The display assembly may include an array of electromechanical systems display devices. The sensor may be configured to provide a signal indicative of an illumination angle, a viewing angle, or both, with respect to a line perpendicular to the display assembly. The processor may be configured to receive the signal from the sensor, to determine the illumination angle and/or viewing angle, and to process image data to compensate for the determined illumination angle and/or viewing angle. In one implementation, the image data is processed to compensate for a shift in a wavelength of light reflected from at least one of the electromechanical systems display devices that would have occurred as a result of a non-normal illumination and/or viewing angle.
Abstract:
This disclosure provides systems, methods and apparatus for an electromechanical systems reflective display device. In one aspect, an electromechanical systems display device includes a reflective layer and an absorber layer. The absorber layer is spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, and includes a metal layer. A plurality of matching layers are on a surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.
Abstract:
This disclosure provides systems, methods, and apparatus for an electromechanical systems (EMS) device with one or more protrusions connected to a surface of the EMS device. In one aspect, the EMS device includes a substrate, a stationary electrode over the substrate, and a movable electrode over the stationary electrode. The movable electrode is configured to move to three or more positions across a gap by electrostatic actuation between the movable electrode and the stationary electrode. When the protrusions contact any surface of the EMS device at one of the positions across the gap, the protrusions change the stiffness of the EMS device. At least one of the surfaces in contact with the one or more protrusions is non-rigid. In some implementations, the protrusions have a height greater than about 20 nm.
Abstract:
This disclosure provides systems, methods, and apparatus related to electromechanical systems display devices. In one aspect, an apparatus includes a display assembly, a sensor, and a processor. The display assembly may include an array of electromechanical systems display devices. The sensor may be configured to provide a signal indicative of an illumination angle, a viewing angle, or both, with respect to a line perpendicular to the display assembly. The processor may be configured to receive the signal from the sensor, to determine the illumination angle and/or viewing angle, and to process image data to compensate for the determined illumination angle and/or viewing angle. In one implementation, the image data is processed to compensate for a shift in a wavelength of light reflected from at least one of the electromechanical systems display devices that would have occurred as a result of a non-normal illumination and/or viewing angle.
Abstract:
This disclosure provides systems, methods, and apparatus for an electromechanical systems (EMS) device with one or more protrusions connected to a surface of the EMS device. In one aspect, the EMS device includes a substrate, a stationary electrode over the substrate, and a movable electrode over the stationary electrode. The movable electrode is configured to move to three or more positions across a gap by electrostatic actuation between the movable electrode and the stationary electrode. When the protrusions contact any surface of the EMS device at one of the positions across the gap, the protrusions change the stiffness of the EMS device. At least one of the surfaces in contact with the one or more protrusions is non-rigid. In some implementations, the protrusions have a height greater than about 20 nm.
Abstract:
This disclosure provides systems, methods and apparatus for an electromechanical systems reflective display device. In one aspect, an electromechanical systems display device includes a reflective layer and an absorber layer. The absorber layer is spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, and includes a metal layer. A plurality of matching layers are on a surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.