Abstract:
An accommodating intraocular lens implant is provided that includes (a) a bowl-shaped posterior component and (b) an anterior component, which includes an anterior floating lens unit, which includes an anterior lens; a circumferential rim; and levers, which connect the anterior floating lens unit to the circumferential rim, such that the anterior floating lens unit is movable toward and away from the circumferential ring in an anterior-posterior direction. The bowl-shaped posterior component and the anterior component are distinct from each other and not permanently fixed to each other, and are shaped so as to be assemblable together in situ in a human eye such that the circumferential rim contacts an interface region of an inner surface of the bowl-shaped posterior component, and the levers are pivotable about the interface region during motion of the anterior floating lens unit toward and away from the circumferential ring in the anterior-posterior direction.
Abstract:
A method for treating hydrocephalus is provided, including disposing midplane treatment electrodes over a superior sagittal sinus of a brain, outside and in electrical contact with a skull of a head of a subject identified as suffering from hydrocephalus, and disposing lateral treatment electrodes between 1 and 12 cm of a sagittal midplane of the skull. The subject is treated by electroosmotically driving cerebrospinal fluid (CSF) out of a ventricular system of the brain via a subarachnoid space of the brain to the superior sagittal sinus, by activating control circuitry to apply one or more treatment currents between (a) one or more of the midplane treatment electrodes and (b) one or more of the lateral treatment electrodes. Other embodiments are also described.
Abstract:
Apparatus is provided that includes a drug capsule containing an oral drug, and a sensing apparatus that includes a housing and a sensor. The housing is shaped so as to define exactly one hemispherical portion and exactly one cylindrical portion, which together define an internal surface tightly fitted to at least a portion of an external surface of the drug capsule. The sensor includes first and second electrodes, which comprise first and second electrode surfaces, respectively; and circuitry, which (a) is attached to the housing, (b) is electrically coupled to the first and the second electrode surfaces, and (c) is configured to drive a current between the first and the second electrode surfaces. Other embodiments are also described.
Abstract:
Apparatus is provided that includes a parenchymal electrode, configured to be implanted in brain parenchyma of a subject identified as at risk of or suffering from Alzheimer's disease; and a ventricular electrode, configured to be implanted in a ventricular system of a brain of the subject. Control circuitry is configured to drive the parenchymal and the ventricular electrodes to clear a substance from the brain parenchyma into the ventricular system. Other embodiments are also described.
Abstract:
A method includes disposing at least one pair of electrodes in or on a body of a subject, including disposing at least one intrarenal electrode of the pair in a renal artery. Control circuitry is activate to (a) apply electrical pulses between the pair of electrodes, (b) calculate at least one time-varying component of electrode-tissue impedance based on applying the pulses, (c) sense a periodic hemodynamic signal of the subject, (d) calculate a level of correlation between the at least one time-varying component of the electrode-tissue impedance and the periodic hemodynamic signal, and (e) based on the level of correlation, ascertain a level of contact between the at least one intrarenal electrodes and a wall of the renal artery. In response to the level of contact being less than a threshold level of contact, a disposition of the at least one intrarenal electrodes in the renal artery is adjusted.
Abstract:
Apparatus and methods are described, including apparatus for pacing a heart of a subject. The apparatus includes an implantable pulse generator (IPG) and a coiled lead connected to the IPG, The coiled lead includes a smaller-diameter coiled portion, a lumen of which having a first coil-lumen-diameter, and a larger-diameter coiled portion electrically in series with the smaller-diameter coiled portion, a lumen of the larger-diameter coiled portion having a second coil-lumen-diameter that is larger than the first coil-lumen-diameter. A perpendicular distance from a central longitudinal axis of the smaller-diameter coiled portion to the lumen of the larger-diameter coiled portion is greater than an outer radius of the smaller-diameter coiled portion, when the central longitudinal axis of the smaller-diameter coiled portion is parallel to a central longitudinal axis of the larger-diameter coiled portion, Other applications are also described.
Abstract:
A method is provided, comprising: (1) applying an excitatory current to renal nerve fibers of a subject; (2) determining a change in a parameter of the subject in response to the excitatory current, the parameter being a fastest rate of increase in arterial pressure during a systolic upstroke of an arterial pressure wave of the subject; (3) in response to the change, deciding whether to ablate the renal nerve fibers; and (4) in response to the deciding, applying ablation energy to the renal nerve fibers. Other embodiments are also described.
Abstract:
Apparatus and methods are described, including apparatus for treating a subject for obstructive sleep apnea (OSA). The apparatus includes an implant, an imaging device, and a control unit. In response to a set of training images received from the imaging device, the control unit learns an association between a position of a head of the subject and OSA of the subject. In response to the association, the control unit establishes, for an OSA-related parameter, at least two distinct thresholds corresponding to respective different head positions. Subsequently, at a second time, the control unit selects a threshold that corresponds to the position of the subject's head, and if the value of the OSA-related parameter passes the selected threshold, treats the subject for OSA by driving the implant to apply current to an anatomical site of the subject. Other applications are also described.
Abstract:
Apparatus comprising (1) a breathing sensor, configured to detect a breathing-related factor of a subject; (2) at least a first electrode configured to be placed in a vicinity of a respective first hypoglossal nerve, and to be driven, in response to the detected breathing-related factor, to apply a first electrical current to the first hypoglossal nerve; (3) at least a second electrode configured to be placed in a vicinity of a respective second hypoglossal nerve, and to be driven, in response to the detected breathing-related factor, to apply a second electrical current to the second hypoglossal nerve; and (4) circuitry configured to, in response to a detected symmetry-related factor indicative of a degree of symmetry of the subject, configure at least one current selected from the group consisting of: the first current and the second current. Other embodiments are also described.
Abstract:
Apparatus for driving fluid between first and second anatomical sites of a subject is provided, comprising (1) a first electrode, configured to be coupled to the first anatomical site of the subject; (2) a second electrode, configured to be coupled to the second anatomical site of the subject; and (3) a control unit, configured to (i) detect a pressure difference between the first and second anatomical sites, and (ii) in response to the detected pressure difference, drive fluid between the first and second anatomical sites by applying a treatment voltage between the first and second electrodes. Other embodiments are also described.