-
公开(公告)号:US11248953B2
公开(公告)日:2022-02-15
申请号:US16567756
申请日:2019-09-11
Applicant: RAYTHEON COMPANY
Inventor: James R. Chow , Edward Ward, Jr. , Christopher R. Koontz , Hans P. Naepflin , Steven E. Persh , Stephen J. Schiller , Stephanie Lin
Abstract: A broadband calibrator assembly is provided and includes a medium/long wave infrared (MW/LW IR) assembly and multiple ultraviolet (UV)/visible and near IR (VNIR)/short wave IR (SWIR) assemblies.
-
公开(公告)号:US11010639B2
公开(公告)日:2021-05-18
申请号:US16279212
申请日:2019-02-19
Applicant: Raytheon Company
Inventor: John J. Coogan , Stephen J. Schiller
Abstract: An angularly-dependent reflectance of a surface of an object is measured. Images are collected by a sensor at different sensor geometries and different light-source geometries. A point cloud is generated. The point cloud includes a location of a point, spectral band intensity values for the point, an azimuth and an elevation of the sensor, and an azimuth and an elevation of a light source. Raw pixel intensities of the object and surroundings of the object are converted to a surface reflectance of the object using specular array calibration (SPARC) targets. A three-dimensional (3D) location of each point in the point cloud is projected back to each image using metadata from the plurality of images, and spectral band values are assigned to each value in the point cloud, thereby resulting in a multi-angle spectral reflectance data set. A multi-angle surface-specific signature (MASS) is fitted to the multi-angle spectral reflectance data set, and the multi-angle surface-specific signature of the object and the surroundings of the object are stored into a spectral database. The spectral database is mined to find one or more of spatial and temporal anomalies in the plurality of images and patterns and correlations of the multi-angle surface-specific signature.
-
公开(公告)号:US11971321B2
公开(公告)日:2024-04-30
申请号:US17612102
申请日:2019-05-22
Applicant: Raytheon Company
Inventor: Stephen J. Schiller
CPC classification number: G01M11/005 , G01N21/95 , F24S23/70 , F24S2023/832 , G01N2021/9511 , H02S40/22
Abstract: A system (100) and method can monitor a reflectance of a mirror target that includes at least one curved mirror (M). The system (100) can take a first irradiance measurement of the sun (S), the first irradiance measurement representing a direct solar irradiance. The system (100) can take a second irradiance measurement that represents an irradiance from a reflection of the sun (S) from the mirror target plus background irradiance from a reflection of the sky from the mirror target. The system (100) can take a third irradiance measurement that represents the background irradiance from the reflection of the sky from the mirror target. The system (100) can determine a reflectance of the mirror target from the first, second, and third irradiance measurements. The system (100) can compare the reflectance to a specified reflectance threshold, and, upon determining that the reflectance of the mirror target is less than the specified reflectance threshold, can generate an alert signal.
-
公开(公告)号:US20210072074A1
公开(公告)日:2021-03-11
申请号:US16567756
申请日:2019-09-11
Applicant: RAYTHEON COMPANY
Inventor: James R. Chow , Edward Ward, JR. , Christopher R. Koontz , Hans P. Naepflin , Steven E. Persh , Stephen J. Schiller , Stephanie Lin
Abstract: A broadband calibrator assembly is provided and includes a medium/long wave infrared (MW/LW IR) assembly and multiple ultraviolet (UV)/visible and near IR (VNIR)/short wave IR (SWIR) assemblies.
-
公开(公告)号:US20190258899A1
公开(公告)日:2019-08-22
申请号:US16279212
申请日:2019-02-19
Applicant: Raytheon Company
Inventor: John J. Coogan , Stephen J. Schiller
Abstract: An angularly-dependent reflectance of a surface of an object is measured. Images are collected by a sensor at different sensor geometries and different light-source geometries. A point cloud is generated. The point cloud includes a location of a point, spectral band intensity values for the point, an azimuth and an elevation of the sensor, and an azimuth and an elevation of a light source. Raw pixel intensities of the object and surroundings of the object are converted to a surface reflectance of the object using specular array calibration (SPARC) targets. A three-dimensional (3D) location of each point in the point cloud is projected back to each image using metadata from the plurality of images, and spectral band values are assigned to each value in the point cloud, thereby resulting in a multi-angle spectral reflectance data set. A multi-angle surface-specific signature (MASS) is fitted to the multi-angle spectral reflectance data set, and the multi-angle surface-specific signature of the object and the surroundings of the object are stored into a spectral database. The spectral database is mined to find one or more of spatial and temporal anomalies in the plurality of images and patterns and correlations of the multi-angle surface-specific signature.
-
公开(公告)号:US08913243B2
公开(公告)日:2014-12-16
申请号:US13671048
申请日:2012-11-07
Applicant: Raytheon Company
Inventor: John F. Silny , Stephen J. Schiller
IPC: G01J4/00
CPC classification number: G01J4/00
Abstract: Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy.
Abstract translation: 描述了用于远程传感器的替代偏振校准和性能验证的方法和系统。 该系统包括多个反射镜,其被配置和布置为将来自辐射源的辐射以精确已知的偏振特性反射到远程传感器上。 每个反射镜被定位成使得目标图像不重叠。 远程传感器被配置为接收从多个反射镜反射的辐射并将接收到的辐射存储为图像数据(例如,每个镜的图像显示为点目标)。 该系统包括处理器,其被配置为处理接收到的数据以对远程传感器的每个偏振或频谱通道提供直接校准和性能验证。 此外,校准方法除去透射率以外的所有大气效应,并提供具有高极化对比度,全光谱性能和易于部署的参考目标。
-
公开(公告)号:US20190259135A1
公开(公告)日:2019-08-22
申请号:US16281977
申请日:2019-02-21
Applicant: Raytheon Company
Inventor: Stephen J. Schiller
Abstract: In an optical system, a color filter mosaic can determine first color pixel locations, second color pixel locations, and third color pixel locations in an array of sensor pixels. The optical system can capture overhead images, which can be subtracted to form a background-subtracted tri-color image of a reflection of sunlight from at least one ground-based curved mirror. A processor can scale color values at the first and second color pixel locations of the tri-color background-subtracted image. The processor can form a single-color background-subtracted image from the scaled color values at the first color pixel locations, the scaled color values at the second color pixel locations, and third color values at the third color pixel locations. The single-color background-subtracted image can correspond to a point spread function or a line spread function of the optical system.
-
公开(公告)号:US09372119B2
公开(公告)日:2016-06-21
申请号:US14541640
申请日:2014-11-14
Applicant: Raytheon Company
Inventor: John F. Silny , Stephen J. Schiller
IPC: G01J4/00
CPC classification number: G01J4/00
Abstract: Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy.
Abstract translation: 描述了用于远程传感器的替代偏振校准和性能验证的方法和系统。 该系统包括多个反射镜,其被配置和布置为将来自辐射源的辐射以精确已知的偏振特性反射到远程传感器上。 每个反射镜被定位成使得目标图像不重叠。 远程传感器被配置为接收从多个反射镜反射的辐射并将接收到的辐射存储为图像数据(例如,每个镜的图像显示为点目标)。 该系统包括处理器,其被配置为处理接收到的数据以对远程传感器的每个偏振或频谱通道提供直接校准和性能验证。 此外,校准方法除去透射率以外的所有大气效应,并提供具有高极化对比度,全光谱性能和易于部署的参考目标。
-
公开(公告)号:US20150062580A1
公开(公告)日:2015-03-05
申请号:US14541640
申请日:2014-11-14
Applicant: Raytheon Company
Inventor: John F. Silny , Stephen J. Schiller
IPC: G01J4/00
CPC classification number: G01J4/00
Abstract: Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy.
Abstract translation: 描述了用于远程传感器的替代偏振校准和性能验证的方法和系统。 该系统包括多个反射镜,其被配置和布置为将来自辐射源的辐射以精确已知的偏振特性反射到远程传感器上。 每个反射镜被定位成使得目标图像不重叠。 远程传感器被配置为接收从多个反射镜反射的辐射并将接收到的辐射存储为图像数据(例如,每个镜的图像显示为点目标)。 该系统包括处理器,其被配置为处理接收到的数据以对远程传感器的每个偏振或频谱通道提供直接校准和性能验证。 此外,校准方法除去透射率以外的所有大气效应,并提供具有高极化对比度,全光谱性能和易于部署的参考目标。
-
公开(公告)号:US20220326149A1
公开(公告)日:2022-10-13
申请号:US17228966
申请日:2021-04-13
Applicant: RAYTHEON COMPANY
Inventor: Randall W. Zywicki , Stephen J. Schiller
IPC: G01N21/3577 , G02B5/18 , G01J3/28
Abstract: A method for vicarious spatial characterization of a remote sensor system. The method includes detecting, via the remote sensor system, radiation reflected from at least one body of water corresponding to a plurality of point reflector images, selecting a set of point reflector images from the plurality of point reflector images, the selected set of point reflector images corresponding to sub-pixel point reflector images, analyzing the selected set of point reflector images by executing an algorithm for fitting the point reflector images to obtain a point spread function of the remote sensor system, and determining a spatial characteristic of the remote sensor system based on the point spread function.
-
-
-
-
-
-
-
-
-