Abstract:
A portable medical sanitation device includes a power source, a solid-state UV light source for outputting UV light (e.g. within the UV-C band), a controller for directing the plurality of solid-state UV light sources to output UV light, a sterilization chamber comprising a cavity having side-walls having the solid-state UV light source coupled thereto, wherein the sterilization chamber is configured to receive UV light from the plurality of solid-state UV light sources, and wherein the side-walls are configured to reflect UV light incident thereto, and a housing configured to contain the power source, the plurality of solid-state UV light sources, the controller and the sterilization chamber.
Abstract:
A portable baby bottle sterilization device includes a housing having disposed therein an inner lining defining a bottle sterilization cavity, wherein the bottle sterilization cavity includes an opening, and wherein the inner lining is configured to receive one or more baby bottles therein through the opening, a power source, a plurality of UV LEDs coupled to the power source and to the inner lining, wherein the plurality of UV LED configured to provide UV-C light within the bottle sterilization cavity, and a processor coupled to the power source and to the plurality of UV LEDs, wherein the processor is configured to control intensity and duration of the UV-C light within the bottle sterilization cavity, and a cover coupled to the housing, wherein the cover is repositionable relative to the housing, wherein the cover can be positioned to removably cover the opening of the bottle sterilization cavity.
Abstract:
A method of fabricating an ultraviolet (UV) light emitting device includes receiving a UV transmissive substrate, forming a first UV transmissive layer comprising aluminum nitride upon the UV transmissive substrate using a first deposition technique at a temperature less than about 800 degrees Celsius or greater than about 1200 degrees Celsius, forming a second UV transmissive layer comprising aluminum nitride upon the first UV transmissive layer comprising aluminum nitride using a second deposition technique that is different from the first deposition technique, at a temperature within a range of about 800 degrees Celsius to about 1200 degrees Celsius, forming an n-type layer comprising aluminum gallium nitride layer upon the second UV transmissive layer, forming one or more quantum well structures comprising aluminum gallium nitride upon the n-type layer, and forming a p-type nitride layer upon the one or more quantum well structures.
Abstract:
A method of fabricating an ultraviolet (UV) light emitting device includes receiving a UV transmissive substrate, forming a first UV transmissive layer comprising aluminum nitride upon the UV transmissive substrate using a first deposition technique at a temperature less than about 800 degrees Celsius or greater than about 1200 degrees Celsius, forming a second UV transmissive layer comprising aluminum nitride upon the first UV transmissive layer comprising aluminum nitride using a second deposition technique that is different from the first deposition technique, at a temperature within a range of about 800 degrees Celsius to about 1200 degrees Celsius, forming an n-type layer comprising aluminum gallium nitride layer upon the second UV transmissive layer, forming one or more quantum well structures comprising aluminum gallium nitride upon the n-type layer, and forming a p-type nitride layer upon the one or more quantum well structures.
Abstract:
A method for a hand-held device comprising illuminating, with a first UV LED associated with the hand-held device, a surface of an object with UV light, acquiring with a visible-light image sensor on the hand-held device, a first image of the surface of the object while the surface of the object is illuminated by the first UV LED, performing with the processor in the hand-held device, a function upon the first image to determine a type of contaminant disposed upon the surface of the object, determining with the processor in the hand-held device, sanitation techniques to perform in response to the type of contaminant that is determined, and displaying with a touch-screen display on the hand-held device, the sanitation techniques to the user.
Abstract:
A method for a hand-held device comprising illuminating, with a first UV LED associated with the hand-held device, a surface of an object with UV light, acquiring with a visible-light image sensor on the hand-held device, a first image of the surface of the object while the surface of the object is illuminated by the first UV LED, performing with the processor in the hand-held device, a function upon the first image to determine a type of contaminant disposed upon the surface of the object, determining with the processor in the hand-held device, sanitation techniques to perform in response to the type of contaminant that is determined, and displaying with a touch-screen display on the hand-held device, the sanitation techniques to the user.
Abstract:
A method of fabricating an ultraviolet (UV) light emitting device includes receiving a UV transmissive substrate, forming a first UV transmissive layer comprising aluminum nitride upon the UV transmissive substrate using a first deposition technique at a temperature less than about 800 degrees Celsius or greater than about 1200 degrees Celsius, forming a second UV transmissive layer comprising aluminum nitride upon the first UV transmissive layer comprising aluminum nitride using a second deposition technique that is different from the first deposition technique, at a temperature within a range of about 800 degrees Celsius to about 1200 degrees Celsius, forming an n-type layer comprising aluminum gallium nitride layer upon the second UV transmissive layer, forming one or more quantum well structures comprising aluminum gallium nitride upon the n-type layer, and forming a p-type nitride layer upon the one or more quantum well structures.
Abstract:
A storage container includes an input portion for receiving and filtering a source liquid to form an output liquid, a storage portion for storing the filtered liquid, and a base portion disposed below the storage portion including a UV light source for providing transmitted UV light to the filtered liquid, a UV light detector disposed an optical path length away from the UV light source for detecting received UV light through the filtered liquid in response to the transmitted UV light, a processor for determining an absorption or a transmission percentage in response to the transmitted UV light and the received UV light, for determining a safe condition, in response to the absorption or the transmission percentage respectively not exceeding or exceeding predetermined criteria, and one or more indicators for indicating that the liquid is safe for consumption to a user, in response to the safe condition.
Abstract:
A liquid treatment device includes a base with a power source, a UV-LED module for providing UV-B or UV-C light to liquid, an LED for providing visible light, and a processor for selectively powering the UV-LED module and the LED, and having a UV transmissive material above the UV-LED module for allowing the UV-B or UV-C band light from the UV-LED module to be transmitted from the base housing, and a liquid storage housing removably coupled to the base housing with a storage portion configured to hold liquid and having a bottom portion comprising a UV transmissive material for allowing the UV-B or UV-C band light from the UV-LED module to be transmitted into the liquid, and an output coupled for restricting outflow of the liquid from the storage portion.
Abstract:
An water providing apparatus includes a input portion for receiving untreated water, a treatment portion for treating and outputting treated water having a UV treatment module for reducing pathogens, a filtering mechanism for reducing physical and chemical impurities, a UV analysis module for determining levels of the impurities in the untreated water and for determining levels of impurities in the treated water, a processing unit for determining whether the levels of impurities in the treated water exceed a threshold, a reporting module for outputting the levels of the impurities in the untreated and treated water to a remote monitoring service, and a water output portion for providing the treated water if safe, and for inhibiting output of the treated water if unsafe.