Abstract:
The present invention provides a high frequency power amplifier of an open-loop type, which outputs a signal having a level corresponding to an output level required under control of a power supply voltage for each output power FET, based on a control signal for the output level. The high frequency power amplifier is provided with a bias voltage generating circuit which generates a gate bias voltage of each output power FET according to an output voltage of a power control circuit for controlling the power supply voltage for the output power FET, based on the control signal for the output level.
Abstract:
A multistage high frequency power amplifier-circuit device has a plurality of semiconductor amplification elements connected in a cascade. The circuit device is provided with a bias control circuit used to control the bias voltage or bias current of the output semiconductor amplification element in each stage so as to reduce the variation of the output power with respect to the power control signal voltage in an area around the threshold voltage of the semiconductor amplification elements. This realizes a high frequency power amplifier circuit device provided with excellent controllability of the output power and high efficiency at the time of low power output realized with use of such a control voltage as a power control signal.
Abstract:
A module including a bias circuit that generates gate bias voltages by resistance dividers creates a problem in that the values of the resistances constituting the bias circuit must be finely adjusted, and accordingly extra trimming tasks are required. The present invention provides current generators that generate currents varying with desired characteristics responsive to a control voltage, independent of variations in transistor threshold voltages, connects output resistors to parallel transistors in respective stages to form current mirror circuits, and supplies currents from the current generators thereto to drive them, instead of supplying dividing voltages.