Abstract:
The present invention provides a high frequency power amplifier of an open-loop type, which outputs a signal having a level corresponding to an output level required under control of a power supply voltage for each output power FET, based on a control signal for the output level. The high frequency power amplifier is provided with a bias voltage generating circuit which generates a gate bias voltage of each output power FET according to an output voltage of a power control circuit for controlling the power supply voltage for the output power FET, based on the control signal for the output level.
Abstract:
In a radio communication system wherein the detection of output level required for feedback control of output power is carried out by current detection, the stability of control loop and the response to change in request-to-send level are enhanced. An electronic component for high frequency power amplifier carries out the detection of output level, required for feedback control of the output power of a high frequency power amplification circuit, by current detection. The electronic component has an error amplifier. The error amplifier compares an output level detection signal with an output level instruction signal, and generates a signal for controlling the gain of the high frequency power amplification circuit according to the difference between them. For the error amplifier, a low-pass amplification circuit is used. The amplification circuit is provided with between its output terminal and its inverting input terminal with a phase compensation circuit. The phase compensation circuit comprises a resistance element, and another resistance element and a capacitive element in series connected in parallel with the resistance element.
Abstract:
The number of components of a high frequency power amplifier is reduced. A bias resistance ratio is adjusted in accordance with a change in the threshold voltage Vth of a transistor. There is provided a high frequency power amplifier having a plurality of amplifying systems, characterized in that each of the amplifying systems comprises an input terminal to which a signal to be amplified is supplied, an output terminal, a bias terminal, a plurality of amplifying stages which are sequentially cascaded between the input terminal and output terminal, and a bias circuit connected to the bias terminal and each of the amplifying stages to apply a bias potential to the amplifying stage, in that the amplifying stage includes a control terminal for receiving an input signal and the bias potential supplied to the stage and a first terminal for transmitting an output signal of the stage, and in that a first amplifying stage and a second amplifying stage of each of the amplifying systems are monolithically formed on a single semiconductor chip, and a part of bias resistors that constitute bias circuits of the first amplifying stage and second amplifying stage are monolithically formed on the semiconductor chip.