Abstract:
A method of making a plurality of resin beads comprising (a) providing a reaction mixture comprising monovinyl aromatic monomer, multivinyl aromatic monomer, and porogen, (b) performing aqueous suspension polymerization on said reaction mixture to form resin beads, and (c) sulfonating said resin beads. Also provided is a plurality of resin beads, wherein said resin beads comprise polymerized units of monovinyl aromatic monomer and polymerized units of multivinyl aromatic monomer, wherein said resin beads have BET surface area of 15 to 38 m2/g and volume capacity of 0.7 or higher. Also provided is a method of making a product of the chemical reaction of one or more reactants, said method comprising reacting said one or more reactants with each other in the presence of the plurality of such resin beads.
Abstract:
A method of making a plurality of resin beads comprising (a) providing a reaction mixture comprising monovinyl aromatic monomer, multivinyl aromatic monomer, and porogen, (b) performing aqueous suspension polymerization on said reaction mixture to form resin beads, and (c) sulfonating said resin beads. Also provided is a plurality of resin beads, wherein said resin beads comprise polymerized units of monovinyl aromatic monomer and polymerized units of multivinyl aromatic monomer, wherein said resin beads have BET surface area of 15 to 38 m2/g and volume capacity of 0.7 or higher. Also provided is a method of making a product of the chemical reaction of one or more reactants, said method comprising reacting said one or more reactants with each other in the presence of the plurality of such resin beads.
Abstract:
A method of making a plurality of resin beads comprising (a) providing a reaction mixture comprising monovinyl aromatic monomer, multivinyl aromatic monomer, and porogen, (b) performing aqueous suspension polymerization on said reaction mixture to form resin beads, and (c) sulfonating said resin beads. Also provided is a plurality of resin beads, wherein said resin beads comprise polymerized units of monovinyl aromatic monomer and polymerized units of multivinyl aromatic monomer, wherein said resin beads have BET surface area of 15 to 38 m2/g and volume capacity of 0.7 or higher. Also provided is a method of making a product of the chemical reaction of one or more reactants, said method comprising reacting said one or more reactants with each other in the presence of the plurality of such resin beads.
Abstract:
Provided is a plurality of resin beads, wherein the resin beads comprise polymerized units of monovinyl aromatic monomer and polymerized units of multivinyl aromatic monomer, and wherein the resin beads have BET surface area of 15 to 38 m2/g and volume capacity of 0.7 or higher. Also provided is a method of making a product of the chemical reaction of one or more reactants, where the method comprises reacting the reactants with each other in the presence of such resin beads.
Abstract:
This invention relates to no-salt and mixed salt suspension polymerization processes for water-soluble monomers and resins and relates to catalysts produced from the same.
Abstract:
A method of making a plurality of resin beads comprising (a) providing a reaction mixture comprising monovinyl aromatic monomer, multivinyl aromatic monomer, and porogen, (b) performing aqueous suspension polymerization on said reaction mixture to form resin beads, and (c) sulfonating said resin beads. Also provided is a plurality of resin beads, wherein said resin beads comprise polymerized units of monovinyl aromatic monomer and polymerized units of multivinyl aromatic monomer, wherein said resin beads have BET surface area of 15 to 38 m2/g and volume capacity of 0.7 or higher. Also provided is a method of making a product of the chemical reaction of one or more reactants, said method comprising reacting said one or more reactants with each other in the presence of the plurality of such resin beads.
Abstract:
This invention relates to no-salt and mixed salt suspension polymerization processes for water-soluble monomers and resins and relates to catalysts produced from the same.