Abstract:
A transducer baseplate includes a base, a protrusion extending from the base along a longitudinal axis, a pair of opposed transducer receptacles defined within the protrusion, and respective pressure plena. The pressure plena are separated by a plenum wall, each plenum being in fluid connection with an area external to the protrusion through a respective pressure line. The pressure lines provide a direct fluid path to their respective receptacles.
Abstract:
A capacitive pressure sensor includes a substrate wafer and a diaphragm wafer. The substrate wafer defines a substrate recess with a first recess. The diaphragm wafer defines a diaphragm recess with a second recess. The diaphragm wafer is bonded to the substrate wafer such that the substrate and diaphragm recesses form a height differentiated pressure chamber.
Abstract:
A transducer baseplate includes a base, a protrusion extending from the base along a longitudinal axis, a pair of opposed transducer receptacles defined within the protrusion, and respective pressure plena. The pressure plena are separated by a plenum wall, each plenum being in fluid connection with an area external to the protrusion through a respective pressure line. The pressure lines provide a direct fluid path to their respective receptacles.
Abstract:
A sensor system includes a plurality of strain gauges and a passive compensation circuit. The plurality of strain gauges are configured to provide an output voltage indicative of a sensed pressure using an input voltage. The passive compensation circuit that includes a span resistor, first and second compensation resistors, and a zero offset resistor. The span resistor is connected between an input voltage and the pressure sensor and is configured to control a range of an output voltage for a pressure range of the pressure sensor. The first and second compensation resistors are operatively connected in parallel with the pressure sensor and are configured to control current provided to the pressure sensor. The zero offset resistor is operatively connected between the first and second compensation resistors and the pressure sensor and is configured to control a base value of the output voltage for zero pressure.
Abstract:
A transducer baseplate includes a base, a protrusion extending from the base along a longitudinal axis, a pair of opposed transducer receptacles defined within the protrusion, and respective pressure plena. The pressure plena are separated by a plenum wall, each plenum being in fluid connection with an area external to the protrusion through a respective pressure line. The pressure lines provide a direct fluid path to their respective receptacles.
Abstract:
A sensor system includes a plurality of strain gauges and a passive compensation circuit. The plurality of strain gauges are configured to provide an output voltage indicative of a sensed pressure using an input voltage. The passive compensation circuit that includes a span resistor, first and second compensation resistors, and a zero offset resistor. The span resistor is connected between an input voltage and the pressure sensor and is configured to control a range of an output voltage for a pressure range of the pressure sensor. The first and second compensation resistors are operatively connected in parallel with the pressure sensor and are configured to control current provided to the pressure sensor. The zero offset resistor is operatively connected between the first and second compensation resistors and the pressure sensor and is configured to control a base value of the output voltage for zero pressure.
Abstract:
A dielectric header sub-assembly includes a header body with opposed first and second surfaces and a side wall. The first and second surfaces define a header axis extending therebetween. The side wall extends from the first surface to the second surface. The second surface includes a tapered portion. A dielectric header sub-assembly includes a bore. The bore extends from the first surface to the second surface. A first bore opening of the bore proximate to the first surface is greater in area than a second bore opening of the bore proximate the second surface. A method of assembling a header sub-assembly includes inserting an electrical connector into a bore of a header body, applying an active braze filler material into the bore and applying heat to braze the active braze filler material to the header body and the electrical connector.
Abstract:
A capacitive pressure sensor includes a substrate wafer and a diaphragm wafer. The substrate wafer defines a substrate recess with a first recess. The diaphragm wafer defines a diaphragm recess with a second recess. The diaphragm wafer is bonded to the substrate wafer such that the substrate and diaphragm recesses form a height differentiated pressure chamber.
Abstract:
A transducer baseplate includes a base, a protrusion extending from the base along a longitudinal axis, a pair of opposed transducer receptacles defined within the protrusion, and respective pressure plena. The pressure plena are separated by a plenum wall, each plenum being in fluid connection with an area external to the protrusion through a respective pressure line. The pressure lines provide a direct fluid path to their respective receptacles.
Abstract:
A pressure sensor assembly includes a pressure sensor having a pressure sensing transducer connected to a plurality of electrode pins via a plurality of electrode pads disposed on the transducer, an inner casing configured to hold the pressure sensing transducer including a plurality of inner casing electrode pin channels having the electrode pins disposed therein. The pressure sensor further includes an outer casing holding the inner casing therein having a capsule header with a plurality of capsule header electrode pin channels defined therein which can include a ceramic seal disposed therein such that the capsule header electrode pin channels engage the electrode pins in an insulating sealed relationship. The outer casing further includes an isolator plate including an isolator plate fluid port defined therein and a pressure isolator disposed on the isolator plate and configured to deflect in response to a change in ambient pressure. The pressure sensor includes a pressure transmitting fluid disposed in the fluid volume.