Abstract:
The invention pertains to a zeolite catalyst, methods of making same, and its use in the catalytic cracking of naphtha for the production of lower molecular weight olefins and alkanes, while minimizing production less desirable products. A zeolite is modified by base leaching and by the addition of a metal cation, thereby lowering the Si/Al2 ratio and improving the stability of the formed catalyst.
Abstract:
Methods for generating a purified catalyst are provided. The method includes performing a reaction in a reaction vessel to generate a liquid catalyst and reaction products, purging the reaction products using an inert gas to form a purged catalyst, freezing the purged catalyst in the reaction vessel, and applying a vacuum to the reaction vessel while the purged catalyst thaws, wherein the vacuum removes residual reaction products to form a purified catalyst. Systems for generating a purified catalyst and a purified catalyst are also provided.
Abstract:
The invention pertains to a zeolite catalyst, methods of making same, and its use in the catalytic cracking of naphtha for the production of lower molecular weight olefins and alkanes, while minimizing production less desirable products. A zeolite is modified by base leaching and by the addition of a metal cation, thereby lowering the Si/Al2 ratio and improving the stability of the formed catalyst.
Abstract translation:本发明涉及一种沸石催化剂,其制备方法,以及其在用于生产低分子量烯烃和烷烃的石脑油的催化裂化中的用途,同时使生产不太理想的产物最小化。 通过碱浸出和金属阳离子改性沸石,从而降低Si / Al 2比例并提高形成的催化剂的稳定性。
Abstract:
The invention relates to a catalyst composition comprising (a) a metal M selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), rhenium (Re), ruthenium (Ru) and iridium (Ir), (b) tin (Sn), (c) zinc (Zn), (d) alkaline earth metal and (e) a porous metal oxide catalyst support, wherein the amount of each of elements (a), (b) and (d) is independently chosen in the range of from 0.1 to 5 wt. % based on the porous metal oxide catalyst support and wherein the amount of element (c) is chosen in the range of from 0.1 to 2 wt. % based on the porous metal oxide catalyst support. Furthermore, the invention also relates to a process for the preparation of said catalyst composition and its use in non-oxidative dehydrogenation of an alkane, preferably propane.
Abstract:
The inventions described herein relate to catalysts comprising a zeolite comprising at least one metal or ion thereof, wherein the at least one metal or ion thereof comprises barium, strontium, titanium, tungsten, or a mixture thereof, and wherein the zeolite does not comprise molybdenum, or phosphorus, and methods related thereto.
Abstract:
The invention relates to a catalyst composition comprising (a) a metal M selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), rhenium (Re), ruthenium (Ru) and iridium (Ir), (b) tin (Sn), (c) zinc (Zn), (d) alkaline earth metal and (e) a porous metal oxide catalyst support, wherein the amount of each of elements (a), (b) and (d) is independently chosen in the range of from 0.1 to 5 wt. % based on the porous metal oxide catalyst support and wherein the amount of element (c) is chosen in the range of from 0.1 to 2 wt. % based on the porous metal oxide catalyst support. Furthermore, the invention also relates to a process for the preparation of said catalyst composition and its use in non-oxidative dehydrogenation of an alkane, preferably propane.
Abstract:
The inventions described herein relate to catalysts comprising a zeolite comprising at least one metal or ion thereof, wherein the at least one metal or ion thereof comprises barium, strontium, titanium, tungsten, or a mixture thereof, and wherein the zeolite does not comprise molybdenum, or phosphorus, and methods related thereto.
Abstract:
Methods for generating a purified catalyst are provided. The method includes performing a reaction in a reaction vessel to generate a liquid catalyst and reaction products, purging the reaction products using an inert gas to form a purged catalyst, freezing the purged catalyst in the reaction vessel, and applying a vacuum to the reaction vessel while the purged catalyst thaws, wherein the vacuum removes residual reaction products to form a purified catalyst. Systems for generating a purified catalyst and a purified catalyst are also provided.
Abstract:
The invention relates to a catalyst composition comprising: (i) a porous metal oxide catalyst support, (ii) a precious metal comprises at least one of platinum (Pt), palladium (Pd), rhodium (Rh), rhenium (Re), ruthenium (Ru) and iridium (Ir), and (iii) tin (Sn), and (iv) zinc (Zn), and/or (v) an alkaline earth metal, wherein the catalyst composition is obtained or obtainable by a process comprising (a) depositing the precious metal, Sn, Zn and/or the alkaline earth metal on the porous metal oxide catalyst support to obtain a catalyst precursor and (b) subjecting the catalyst precursor to calcination in an environment comprising oxygen to obtain a catalyst, wherein step (a) comprises the step of (a1) contacting the porous metal oxide catalyst support with a solution comprising a salt of the precious metal and a salt of tin (Sn) and a salt of zinc (Zn) and/or a salt of the alkaline earth metal.