Abstract:
Processor clock signals are generated for each processor in a HPC system, such that all the processor clock signals are of the same frequency. Furthermore, as part of a startup (boot) procedure, a process sets all time stamp counters (TSCs) of the processors, such they indicate identical times. Each blade of the HPC system recovers a recovered clock signal from a synchronous communication network, to which the blade is coupled. The blade generates a processor clock from the recovered clock signal and provides the processor clock to processor(s) on the blade. Each chassis is coupled to a second, system-wide, synchronous communication network, and each chassis synchronizes its chassis synchronous communication network with the system-wide synchronous communication system. Thus, all the processor clock signals are generated with the same frequency.
Abstract:
A high performance computing system and methods are disclosed. The system includes logical partitions with physically removable nodes that each have at least one processor, and memory that can be shared with other nodes. Node hardware may be removed or allocated to another partition without a reboot or power cycle. Memory sharing is tracked using a memory directory. Cache coherence operations on the memory directory include a test to determine whether a given remote node has been removed. If the remote node is not present, system hardware simulates a valid response from the missing node.
Abstract:
A high performance computing system and methods are disclosed. The system includes logical partitions with physically removable nodes that each have at least one processor, and memory that can be shared with other nodes. Node hardware may be removed or allocated to another partition without a reboot or power cycle. Memory sharing is tracked using a memory directory. Cache coherence operations on the memory directory include a test to determine whether a given remote node has been removed. If the remote node is not present, system hardware simulates a valid response from the missing node.
Abstract:
Processor clock signals are generated for each processor in a HPC system, such that all the processor clock signals are of the same frequency. Furthermore, as part of a startup (boot) procedure, a process sets all time stamp counters (TSCs) of the processors, such they indicate identical times. Each blade of the HPC system recovers a recovered clock signal from a synchronous communication network, to which the blade is coupled. The blade generates a processor clock from the recovered clock signal and provides the processor clock to processor(s) on the blade. Each chassis is coupled to a second, system-wide, synchronous communication network, and each chassis synchronizes its chassis synchronous communication network with the system-wide synchronous communication system. Thus, all the processor clock signals are generated with the same frequency.