Abstract:
A method for fabricating a semiconductor device involves providing a transistor device, forming one or more electrical connections to the transistor device, forming one or more dielectric layers over at least a portion of the electrical connections, applying an interface material over at least a portion of the one or more dielectric layers, removing at least a portion of the interface material to form a trench, and covering at least a portion of the interface material and the trench with a substrate layer to form a cavity.
Abstract:
Fabrication of radio-frequency (RF) devices involves providing a field-effect transistor (FET), forming one or more electrical connections to the FET, forming one or more dielectric layers over at least a portion of the electrical connections, and disposing an electrical element over the one or more dielectric layers, the electrical element being in electrical communication with the FET via the one or more electrical connections. RF device fabrication further involves covering at least a portion of the electrical element with a sacrificial material, applying an interface material over the one or more dielectric layers, the interface material at least partially covering the sacrificial material, and removing at least a portion of the sacrificial material to form a cavity at least partially covered by the interface layer.
Abstract:
Fabricating of radio-frequency (RF) devices involve providing a field-effect transistor (FET) formed over an oxide layer formed on a semiconductor substrate, removing at least part of the semiconductor substrate to expose at least a portion of a backside of the oxide layer, applying a sacrificial material to the backside of the oxide layer, applying an interface material to at least a portion of the backside of the oxide layer, the interface material at least partially covering the sacrificial material, and removing at least a portion of the sacrificial material to form a cavity at least partially covered by the interface layer.
Abstract:
MEMS devices having discharge circuits. In some embodiments, a MEMS device can include a substrate and an electromechanical assembly implemented on the substrate. The MEMS device can further include a discharge circuit implemented relative to the electromechanical assembly. The discharge circuit can be configured to provide a preferred arcing path during a discharge condition affecting the electromechanical assembly. The MEMS device can be, for example, a switching device, a capacitance device, a gyroscope sensor device, an accelerometer device, a surface acoustic wave (SAW) device, or a bulk acoustic wave (BAW) device. The discharge circuit can include a spark gap assembly having one or more spark gap elements configured to facilitate the preferred arcing path.
Abstract:
A method for fabricating a semiconductor device involves providing a transistor device formed over an oxide layer formed on a semiconductor substrate, removing at least part of the semiconductor substrate, applying an interface material below to at least a portion of the oxide layer, removing a portion of the interface material to form a trench, and at least partially covering the interface material and the trench with a substrate layer to form a cavity
Abstract:
A method for fabricating a semiconductor device involves providing a semiconductor substrate, forming an oxide layer in the semiconductor substrate, forming a transistor device over the oxide layer, removing at least part of a backside of the semiconductor substrate, applying a sacrificial material below the oxide layer, covering the sacrificial material with an interface material, and removing at least a portion of the sacrificial material to form a cavity at least partially covered by the interface layer.
Abstract:
Microelectromechanical systems (MEMS) having contaminant control features. In some embodiments, a MEMS die can include a substrate and an electromechanical assembly implemented on the substrate. The MEMS die can further include a contaminant control component implemented relative to the electromechanical assembly. The contaminant control component can be configured to move contaminants relative to the electromechanical assembly. For example, such contaminants can be moved away from the electromechanical assembly.
Abstract:
A semiconductor device includes a transistor implemented over an oxide layer, one or more electrical connections to the transistor, one or more dielectric layers formed over at least a portion of the electrical connections, an electrical element disposed over the one or more dielectric layers, the electrical element being in electrical communication with the transistor via the one or more electrical connections, a patterned form of sacrificial material covering at least a portion of the electrical element, and an interface layer covering at least a portion of the one or more dielectric layers and the sacrificial material.
Abstract:
A method for fabricating a semiconductor die involves providing a semiconductor substrate, forming a plurality of active devices and a plurality of passive devices over the semiconductor substrate, forming one or more electrical connections to the plurality of active devices and the plurality of passive devices, forming one or more dielectric layers over at least a portion of the electrical connections, applying an interface material over at least a portion of the one or more dielectric layers, removing portions of the interface material to form a plurality of trenches, and covering at least a portion of the interface material and the plurality of trenches with a substrate layer to form a plurality of radio-frequency isolation cavities.
Abstract:
Fabrication of radio-frequency (RF) devices involves providing a field-effect transistor (FET) formed over an oxide layer formed on a semiconductor substrate, removing at least part of the semiconductor substrate to expose at least a portion of a backside of the oxide layer, applying an interface material to at least a portion of the backside of the oxide layer, removing at least a portion of the interface material to form a trench, and covering at least a portion of the interface material and the trench with a substrate layer to form a cavity.