Abstract:
Provided is a communication path control device that transmits path information for controlling a path for transmitting data to a plurality of communication devices which are connected by a wired path and through which data addressed to the plurality of communication devices is sequentially forwarded.
Abstract:
A motor is provided to reduce a size of a device more effectively. The motor includes a stator, a rotor that is provided to oppose the stator via a clearance, and an encoder that detects a rotation state of the rotor. A hollow space is provided at an inner peripheral side in comparison with the stator and the rotor, and at least a part of the encoder is disposed in the hollow space.
Abstract:
A robot apparatus includes a plurality of arm sections; a grasping-easiness calculation section configured to calculate an index value of grasping easiness quantitatively evaluating easiness of assuming a grasping posture for grasping an object or assuming a transition posture leading to the grasping posture for each of the plurality of arm sections; and an arm-section selection section configured to select an arm section to be used for actually grasping the object on the basis of the index value of the grasping easiness calculated for each of the arm sections.
Abstract:
[Object] To reduce a size of a device more effectively.[Solution] Provided is a motor including: a stator; a rotor that is provided to oppose the stator via a clearance; and an encoder that is capable of detecting a rotation state of the rotor. A hollow space is provided at an inner peripheral side in comparison with the stator and the rotor, and at least a part of the encoder is disposed in the hollow space.
Abstract:
A robot apparatus includes a plurality of arm sections; a grasping-easiness calculation section configured to calculate an index value of grasping easiness quantitatively evaluating easiness of assuming a grasping posture for grasping an object or assuming a transition posture leading to the grasping posture for each of the plurality of arm sections; and an arm-section selection section configured to select an arm section to be used for actually grasping the object on the basis of the index value of the grasping easiness calculated for each of the arm sections.