Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution
    1.
    发明申请
    Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution 有权
    曲线光栅光谱仪和具有非常高波长分辨率的波分复用器或解复用器

    公开(公告)号:US20130272695A1

    公开(公告)日:2013-10-17

    申请号:US13911847

    申请日:2013-06-06

    Applicant: Seng-Tiong Ho

    Abstract: The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.

    Abstract translation: 本申请公开了一种包括紧凑弯曲光栅(CCG)及其相关联的紧凑弯曲光栅光谱仪(CCGS)或紧凑弯曲光栅波长多路复用器/解复用器(WMDM)模块的系统及其制造方法。 该系统能够实现非常小的(分辨率vs.尺寸)RS因子。 在本发明中,可以调整入口狭缝和检测器的位置,以便为特定设计目标具有最佳性能。 使用取决于工作波长的规定公式计算初始槽间距。 基于两个条件计算凹槽的位置。 第一个是相邻槽之间的路径差应该是介质中的波长的整数倍,以便即使在入口处具有大的光束衍射角,也可以在检测器或输出狭缝(或输出波导)处聚焦的无像差光栅 狭缝或输入狭缝(或输入波导)。 第二个特定于曲面光栅光谱仪的特定设计目标。 在一个实施例中,每个具有狭缝和检测器处的​​焦点的椭圆镜用于每个凹槽,以获得无像差的曲面镜。

    Integrated curved grating based semiconductor laser
    2.
    发明授权
    Integrated curved grating based semiconductor laser 有权
    集成弧形光栅基半导体激光器

    公开(公告)号:US08102886B1

    公开(公告)日:2012-01-24

    申请号:US12386817

    申请日:2009-04-23

    Abstract: A wavelength tunable laser which includes a first mirror, a diffraction grating to diffract a laser beam into a plurality of diffracted laser beams, at least one feedback waveguide, at least one second mirror. Each feedback waveguide precedes one of the second mirrors, and a phase detector to detect an error in a wavelength of a received laser beam with respect to a desired wavelength.

    Abstract translation: 一种波长可调激光器,包括第一反射镜,将激光束衍射成多个衍射激光束的衍射光栅,至少一个反馈波导,至少一个第二反射镜。 每个反馈波导在第二反射镜之一之前,以及相位检测器,用于检测相对于期望波长的接收的激光束的波长的误差。

    APPARATUS FOR COUPLING LIGHT BETWEEN INPUT AND OUTPUT WAVEGUIDES
    4.
    发明申请
    APPARATUS FOR COUPLING LIGHT BETWEEN INPUT AND OUTPUT WAVEGUIDES 有权
    用于连接输入和输出波形之间的光的装置

    公开(公告)号:US20100135615A1

    公开(公告)日:2010-06-03

    申请号:US12614995

    申请日:2009-11-09

    CPC classification number: G02B6/32 G02B6/0281 G02B6/0286 G02B6/421 G02B6/43

    Abstract: An apparatus for coupling light between input and output waveguides includes a substrate, an input waveguide disposed on the substrate and comprising a first optical axis, and an output waveguide disposed on the substrate and comprising a second optical axis vertically offset from the first optical axis. A superlens is disposed on the substrate between the input waveguide and the output waveguide. The superlens has a middle optical axis and comprises a vertically graded refractive index film having a refractive index distribution n(y), where y is a vertical direction substantially perpendicular to the middle optical axis.

    Abstract translation: 用于在输入和输出波导之间耦合光的装置包括:衬底,设置在衬底上并包括第一光轴的输入波导和布置在衬底上并包括从第一光轴垂直偏移的第二光轴的输出波导。 在输入波导和输出波导之间的衬底上设置有超薄膜。 超薄体具有中间光轴,并且包括具有折射率分布n(y)的垂直渐变折射率膜,其中y是基本上垂直于中间光轴的垂直方向。

    VARYING REFRACTIVE INDEX OPTICAL MEDIUM USING AT LEAST TWO MATERIALS WITH THICKNESSES LESS THAN A WAVELENGTH
    5.
    发明申请
    VARYING REFRACTIVE INDEX OPTICAL MEDIUM USING AT LEAST TWO MATERIALS WITH THICKNESSES LESS THAN A WAVELENGTH 有权
    使用至少两个材料的薄型折射率指数光学介质,厚度小于波长

    公开(公告)号:US20090046979A1

    公开(公告)日:2009-02-19

    申请号:US12187928

    申请日:2008-08-07

    CPC classification number: G02B6/32

    Abstract: An optical medium has a graded effective refractive index with a high maximum refractive index change. The medium is formed using alternating layers of two or more materials having significantly different refractive indices. The thickness of the layers of at least one of the materials is substantially less than the effective light wavelength of interest. The effective index of refraction in a local region within the medium depends on the ratio of the average volumes of the two materials in the local region. A graded index of refraction is provided by varying the relative thicknesses of the two materials.

    Abstract translation: 光学介质具有梯度有效折射率,具有高的最大折射率变化。 使用具有明显不同折射率的两种或更多种材料的交替层形成介质。 至少一种材料的层的厚度基本上小于感兴趣的有效光波长。 介质内局部区域的有效折射率取决于局部区域两种材料的平均体积比。 通过改变两种材料的相对厚度来提供渐变的折射率。

    Curved grating spectrometer with very high wavelength resolution
    6.
    发明授权
    Curved grating spectrometer with very high wavelength resolution 有权
    弯曲光栅光谱仪具有非常高的波长分辨率

    公开(公告)号:US07283233B1

    公开(公告)日:2007-10-16

    申请号:US10708730

    申请日:2004-03-20

    CPC classification number: G01J3/20 G01J3/22

    Abstract: The present invention discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) module and a method for making the same. The system is capable of achieving very small (resolution vs. size) RS factor. In the invention, the location of entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions: the first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium and the second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.

    Abstract translation: 本发明公开了一种包括紧凑曲面光栅(CCG)及其相关联的紧凑曲线光栅光谱仪(CCGS)模块的系统及其制造方法。 该系统能够实现非常小的(分辨率vs.尺寸)RS因子。 在本发明中,可以调节入口狭缝和检测器的位置,以便为特定设计目标具有最佳性能。 使用取决于工作波长的规定公式计算初始槽间距。 基于两个条件来计算凹槽的位置:第一个是相邻凹槽之间的路径差应该是介质中波长的整数倍,而第二个凹槽之间的路径差应该是特定于弯曲的凹槽的特定设计目标, 光栅光谱仪。 在一个实施例中,每个具有狭缝和检测器处的​​焦点的椭圆镜用于每个凹槽,以获得无像差的曲面镜。

    Method for shifting the bandgap energy of a quantum well layer
    7.
    发明授权
    Method for shifting the bandgap energy of a quantum well layer 失效
    移动量子阱层带隙能量的方法

    公开(公告)号:US06878562B2

    公开(公告)日:2005-04-12

    申请号:US09916701

    申请日:2001-07-26

    Abstract: A process for shifting the bandgap energy of a quantum well layer (e.g., a III-V semiconductor quantum well layer) without inducing complex crystal defects or generating significant free carriers. The process includes introducing ions (e.g., deep-level ion species) into a quantum well structure at an elevated temperature, for example, in the range of from about 200° C. to about 700° C. The quantum well structure that has had ions introduced therein includes an upper barrier layer, a lower barrier layer and a quantum well layer. The quantum well layer is disposed between the upper barrier layer and the lower barrier layer. The quantum well structure is then thermally annealed, thereby inducing quantum well intermixing (QWI) in the quantum well structure and shifting the bandgap energy of the quantum well layer. Also, a photonic device assembly that includes a plurality of operably coupled photonic devices monolithically integrated on a single substrate using the process described above.

    Abstract translation: 用于移动量子阱层(例如,III-V半导体量子阱层)的带隙能量而不引起复杂晶体缺陷或产生显着的自由载流子的方法。 该方法包括在升高的温度例如约200℃至约700℃的范围内将离子(例如,深层离子物质)引入量子阱结构中。已经存在的量子阱结构 在其中引入的离子包括上阻挡层,下势垒层和量子阱层。 量子阱层设置在上阻挡层和下阻挡层之间。 然后量子阱结构被热退火,从而在量子阱结构中引起量子阱混合(QWI)并且移动量子阱层的带隙能量。 此外,光子器件组件包括使用上述方法将单个集成在单个衬底上的多个可操作耦合的光子器件组合在一起。

    Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate
    8.
    发明授权
    Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate 失效
    用于形成覆盖在低介电常数衬底上的薄的光学晶体层的方法

    公开(公告)号:US06436614B1

    公开(公告)日:2002-08-20

    申请号:US09884616

    申请日:2001-06-19

    CPC classification number: G02F1/0356 Y10T156/1059

    Abstract: A method for the formation of a thin optical crystal layer (e.g., a thin LiNbO3 optical single crystal layer) overlying a low dielectric constant substrate (e.g., a low dielectric constant glass substrate). The method includes implanting ions (e.g., He+) through a surface of an optical crystal substrate. The implanting of the ions defines, in the optical crystal substrate, a thin ion-implanted optical crystal layer overlying a bulk optical crystal substrate. A low dielectric constant substrate is subsequently bonded to the surface, using either a direct or an indirect bonding technique, to form a bonded structure. The bonded structure is thermally annealed at a temperature in the range of 300° C. to 600° C. for 30 minutes to 300 minutes. Thereafter, the thin ion-implanted optical crystal layer and low dielectric constant substrate are separated from the bulk optical crystal substrate using mechanical force applied to the low dielectric constant substrate and/or the bulk optical crystal substrate in the direction of separation. As a result, a thin optical crystal layer overlying a low dielectric constant substrate is formed. The thin optical crystal layer has characteristics (e.g., an electro-optical coefficient, surface quality and homogeneity) that are equivalent to the optical crystal substrate, from which it originated, and is thus suitable for use in electro-optical devices. Furthermore, the low dielectric constant substrate enables the manufacturing of electro-optical devices with a reduced RF and optical wave velocity mismatch, a broad bandwidth and a low modulation or switching voltage.

    Abstract translation: 用于形成覆盖在低介电常数衬底(例如,低介电常数玻璃衬底)上的薄的光学晶体层(例如,薄的LiNbO 3光学单晶层)的方法。 该方法包括通过光学晶体衬底的表面注入离子(例如He +)。 离子注入在光学晶体衬底中限定了薄的离子注入的光学晶体层,其覆盖在本体光学晶体衬底上。 随后使用直接或间接结合技术将低介电常数衬底结合到表面上以形成结合结构。 接合结构体在300℃〜600℃的温度范围内热退火30分钟〜300分钟。 此后,使用在分离方向上施加到低介电常数衬底和/或体光学晶体衬底的机械力将薄离子注入光学晶体层和低介电常数衬底与体光学晶体衬底分离。 结果,形成了覆盖在低介电常数衬底上的薄的光学晶体层。 薄的光学晶体层具有等同于其所产生的光学晶体衬底的特性(例如,电光学系数,表面质量和均一性),因此适用于电光器件。 此外,低介电常数衬底能够制造具有降低的RF和光波速度失配,宽带宽和低调制或开关电压的电光器件。

    High speed electro-optic modulator
    9.
    发明授权
    High speed electro-optic modulator 失效
    高速电光调制器

    公开(公告)号:US6069729A

    公开(公告)日:2000-05-30

    申请号:US233338

    申请日:1999-01-20

    CPC classification number: G02F1/035 G02F1/2255

    Abstract: High speed electro-optic modulator designs are presented. One design includes first and second electrodes offset from each other and further includes a substrate supporting a laterally confined ferroelectric material, for example, LiNbO.sub.3. The confined ferroelectric material, in turn, supports first and second optical waveguides. In a second design, a thin ferroelectric film is fabricated on a substrate that supports first and second electrodes. The thin ferroelectric film has a first thickness in which the first and second optical waveguides are supported, and a second thickness under a portion of the electrodes. The second thickness, for example, may be zero. A third design includes a thin ferroelectirc film fabricated on a substrate and supporting first and second electrodes. The thin ferroelectric film has a reduced thickness in at least one electrode gap region.

    Abstract translation: 介绍了高速电光调制器设计。 一个设计包括彼此偏移的第一和第二电极,并且还包括支撑侧向约束的铁电材料的衬底,例如LiNbO 3。 受限制的铁电材料又支撑第一和第二光波导。 在第二种设计中,在支撑第一和第二电极的基板上制造薄铁电薄膜。 薄铁电体膜具有第一厚度,其中第一和第二光波导被支撑,并且在电极的一部分下方具有第二厚度。 第二厚度例如可以为零。 第三种设计包括在基板上制造并支撑第一和第二电极的薄铁电薄膜。 薄铁电薄膜在至少一个电极间隙区域中具有减小的厚度。

Patent Agency Ranking