Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.
Abstract:
A wavelength tunable laser which includes a first mirror, a diffraction grating to diffract a laser beam into a plurality of diffracted laser beams, at least one feedback waveguide, at least one second mirror. Each feedback waveguide precedes one of the second mirrors, and a phase detector to detect an error in a wavelength of a received laser beam with respect to a desired wavelength.
Abstract:
An apparatus for coupling light between input and output waveguides includes a substrate, an input waveguide disposed on the substrate and comprising a first optical axis, and an output waveguide disposed on the substrate and comprising a second optical axis vertically offset from the first optical axis. A superlens is disposed on the substrate between the input waveguide and the output waveguide. The superlens has a middle optical axis and comprises a vertically graded refractive index film having a refractive index distribution n(y), where y is a vertical direction substantially perpendicular to the middle optical axis.
Abstract:
An optical medium has a graded effective refractive index with a high maximum refractive index change. The medium is formed using alternating layers of two or more materials having significantly different refractive indices. The thickness of the layers of at least one of the materials is substantially less than the effective light wavelength of interest. The effective index of refraction in a local region within the medium depends on the ratio of the average volumes of the two materials in the local region. A graded index of refraction is provided by varying the relative thicknesses of the two materials.
Abstract:
The present invention discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) module and a method for making the same. The system is capable of achieving very small (resolution vs. size) RS factor. In the invention, the location of entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions: the first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium and the second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.
Abstract:
A process for shifting the bandgap energy of a quantum well layer (e.g., a III-V semiconductor quantum well layer) without inducing complex crystal defects or generating significant free carriers. The process includes introducing ions (e.g., deep-level ion species) into a quantum well structure at an elevated temperature, for example, in the range of from about 200° C. to about 700° C. The quantum well structure that has had ions introduced therein includes an upper barrier layer, a lower barrier layer and a quantum well layer. The quantum well layer is disposed between the upper barrier layer and the lower barrier layer. The quantum well structure is then thermally annealed, thereby inducing quantum well intermixing (QWI) in the quantum well structure and shifting the bandgap energy of the quantum well layer. Also, a photonic device assembly that includes a plurality of operably coupled photonic devices monolithically integrated on a single substrate using the process described above.
Abstract:
A method for the formation of a thin optical crystal layer (e.g., a thin LiNbO3 optical single crystal layer) overlying a low dielectric constant substrate (e.g., a low dielectric constant glass substrate). The method includes implanting ions (e.g., He+) through a surface of an optical crystal substrate. The implanting of the ions defines, in the optical crystal substrate, a thin ion-implanted optical crystal layer overlying a bulk optical crystal substrate. A low dielectric constant substrate is subsequently bonded to the surface, using either a direct or an indirect bonding technique, to form a bonded structure. The bonded structure is thermally annealed at a temperature in the range of 300° C. to 600° C. for 30 minutes to 300 minutes. Thereafter, the thin ion-implanted optical crystal layer and low dielectric constant substrate are separated from the bulk optical crystal substrate using mechanical force applied to the low dielectric constant substrate and/or the bulk optical crystal substrate in the direction of separation. As a result, a thin optical crystal layer overlying a low dielectric constant substrate is formed. The thin optical crystal layer has characteristics (e.g., an electro-optical coefficient, surface quality and homogeneity) that are equivalent to the optical crystal substrate, from which it originated, and is thus suitable for use in electro-optical devices. Furthermore, the low dielectric constant substrate enables the manufacturing of electro-optical devices with a reduced RF and optical wave velocity mismatch, a broad bandwidth and a low modulation or switching voltage.
Abstract:
High speed electro-optic modulator designs are presented. One design includes first and second electrodes offset from each other and further includes a substrate supporting a laterally confined ferroelectric material, for example, LiNbO.sub.3. The confined ferroelectric material, in turn, supports first and second optical waveguides. In a second design, a thin ferroelectric film is fabricated on a substrate that supports first and second electrodes. The thin ferroelectric film has a first thickness in which the first and second optical waveguides are supported, and a second thickness under a portion of the electrodes. The second thickness, for example, may be zero. A third design includes a thin ferroelectirc film fabricated on a substrate and supporting first and second electrodes. The thin ferroelectric film has a reduced thickness in at least one electrode gap region.
Abstract:
Distributed Bragg Reflectors of high efficacy based on alternating layers of large difference in refractive index are fabricated by epitaxial growth followed by etchant removal and back-filling to produce a structure in which alternation is between layers of retained epitaxially grown material and layers of back-filled material. Such reflectors may serve simply as mirrors or may be incorporated in a variety of devices including lasers, LEDs, detectors, optical switches in which the DBRs serve e.g. for cavitation.