Abstract:
Disclosed is a metal optical filter capable of a photo-lithography process and an image sensor including the same, and more particularly, a metal optical filter capable of a photo-lithography process, which can quite freely adjust the transmission band and transmittance thereof, even with a small number of metal layers, and simultaneously, can be actually applied in a CMOS process because it is possible to achieve nanoscale patterning by the photo-lithography process, and an image sensor including the metal optical filter. The metal optical filter capable of a photo-lithography process includes a plurality of metal rods arranged in parallel with each other at an equal nanoscale interval; and an insulation material formed between the plurality of metal rods and on upper and lower surfaces of the plurality of metal rods, wherein the metal rod is formed to comprise an upper Ti layer, an Al layer, and a lower TiN layer.
Abstract:
An obstacle sensor includes a line light irradiating unit including a light-emitting unit, a light-emitting driving unit to drive the light-emitting unit, and a first conical mirror, an apex of which is disposed towards the light-emitting unit in a light irradiation direction of the light-emitting unit and which converts light emitted from the light-emitting unit into line light irradiated in all directions, and a reflected light receiving unit including a second conical mirror to condense light, that is irradiated from the first conical mirror and is then reflected from an obstacle, a lens, that is spaced from the apex of the second conical mirror by a predetermined distance and transmits the reflected light, an imaging unit to image the reflected light that passes through the lens, an image processing unit, and an obstacle sensing control unit.
Abstract:
Embodiments provide a light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a metal filter of an irregular pattern on the light emitting structure, and openings between the irregular patterns in the metal filter.
Abstract:
Provided are a semiconductor package having connection terminals whose side surfaces are exposed and a semiconductor module including such a semiconductor package. Also provided are methods of fabricating the semiconductor package and semiconductor module. According to an embodiment of the present invention, a semiconductor package includes a semiconductor chip including a semiconductor wafer having first and second opposite surfaces and a plurality of conductive pads arranged in a row on the first surface along the edges of the semiconductor wafer such that a side surface of each conductive pad is exposed. An insulating layer is formed on the first surface of the semiconductor wafer and includes openings for exposing parts of the conductive pads. A plurality of connection terminals are respectively arranged on the conductive pads exposed through the openings and a reinforcing member is arranged on the insulating layer to cover a portion of each connection terminal.