Abstract:
A memory module having a board and a plurality of memory elements on the board which belong to different memory ranks, each memory rank being addressable via a respective selection signal. The memory module additionally includes a memory buffer having a memory rank interface coupled to the memory elements of each memory rank, and a selection signal output for the selection signal of each memory rank, the memory elements being arranged in rows on the board and the memory elements of a memory rank extending only over half of the rows.
Abstract:
A semiconductor memory arrangement includes a substrate, a first control device disposed on the substrate and adapted to receive command and address signals, a second control device, and a plurality of memory units. The second control device is adapted to receive the command and address signals from the first control device and to transmit the command and address signals to the memory units of the plurality of memory units.
Abstract:
A semiconductor memory module, which is formed as an FBDIMM memory module, for example, has a planar design. In the 2R×4 configuration, semiconductor components are arranged in two rows on a top side of a module board and semiconductor memory components are likewise arranged in two rows on an underside of the module board. In contrast to a “Stacked DRAM” design, the semiconductor components in accordance with the planar design contain only one memory chip. By using a parallel routing for a command address bus and an on-die termination bus, the address, clock, and control buses can be adapted in terms of load, so that different signal propagation times on the different buses are avoided to the greatest possible extent.
Abstract:
A semiconductor memory module comprises a control chip for driving ECC memory chips and further memory chips. The memory chips are arranged in two rows on a top side and a bottom side of the module circuit board. The ECC memory chips are arranged centrally on the module circuit board alongside the rows of the memory chips. A control bus connects the ECC memory chips and also the memory chips to the control chip. In a region remote from the control chip, the control bus branches in a contact-making hole into a first partial bus, to which a first group of memory chips are connected, and a second partial bus, to which a second group of memory chips are connected. The ECC memory chips are likewise connected to the control bus via the contact-making hole. Since the ECC memory chips are not arranged directly under the control chip, a bus branch directed backward is not required. As a result, space considerations on the module circuit board are eased and signal integrity on the control buses is improved.
Abstract:
A buffer component for a memory module having a plurality of memory components includes item of access information in accordance with a data transmission protocol, the address, clock, control and command signals depending on the access information, a second data interface for driving a clock signal and address and command signals to the plurality of memory components and for driving a control signal to a group of the plurality of memory components in accordance with a signaling protocol, wherein an activation of the memory components and an acceptance of the address and command signals are effected in a manner dependent on the control signals, and a control unit which applies the address and command signals to the plurality of memory components during a first clock period of the clock signal and applies the control signal for activating the group of the plurality of memory components to the group of the plurality of memory components to be activated when address and command signals are present, in a succeeding second clock period of the clock signal, whereby the address and command signals present are accepted into the group of the plurality of memory components.
Abstract:
A semiconductor memory arrangement includes a control device with a first port and a second port, the first and second port being adapted to receive command and address signals, a first buffer device being coupled to the first port, a second buffer device being coupled to the second port and a plurality of memory units at least including a first group of memory units and a second group of memory units.
Abstract:
A memory module includes a plurality of memory devices and a stacked error correction code memory device. The plurality of memory devices includes one or more memory chips arranged in a plurality of ranks. The stacked error correction code memory device includes a plurality of error correction code memory chips. The number of error correction code memory chips is at least one more than the number of the one or more memory chips. Each of the error correction code memory chips are arranged together with the memory chips of one of the ranks.
Abstract:
A stacked semiconductor memory device includes memory device contacts to externally connect the stacked semiconductor memory device to a printed circuit board. In a dual or quad stack configuration, the stacked semiconductor memory device includes a first package which is stacked above a second package. The first and second packages are preferably designed as FBGA packages, each of them including package contacts. By providing first and second flexible circuit structures to connect the package contacts of the first and second packages to the memory device contacts, a symmetrical stacked package configuration is obtained. This configuration facilitates transmission of signals with improved signal integrity via a bus of the printed circuit board between the stacked semiconductor memory device and a controller chip, even if the frequency of the bus or the load of the stacked semiconductor memory is increased.
Abstract:
A semiconductor memory module, which is formed as an FBDIMM memory module, for example, has a planar design. In the 2R×4 configuration, semiconductor components are arranged in two rows on a top side of a module board and semiconductor memory components are likewise arranged in two rows on an underside of the module board. In contrast to a “Stacked DRAM” design, the semiconductor components in accordance with the planar design contain only one memory chip. By using a parallel routing for a command address bus and an on-die termination bus, the address, clock, and control buses can be adapted in terms of load, so that different signal propagation times on the different buses are avoided to the greatest possible extent.
Abstract:
A memory module having a board and a plurality of memory elements on the board which belong to different memory ranks, each memory rank being addressable via a respective selection signal. The memory module additionally includes a memory buffer having a memory rank interface coupled to the memory elements of each memory rank, and a selection signal output for the selection signal of each memory rank, the memory elements being arranged in rows on the board and the memory elements of a memory rank extending only over half of the rows.