Abstract:
A system and method for injection molding conductive bonding material into a plurality of cavities in a non-rectangular mold is disclosed. The method comprises aligning a fill head with a non-rectangular mold. The non-rectangular mold includes a plurality of cavities. The fill head is placed in substantial contact with the non-rectangular mold. Rotational motion is provided to at least one of the non-rectangular mold and the fill head while the fill head is in substantial contact with the non-rectangular mold. Conductive bonding material is forced out of the fill head toward the non-rectangular mold. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
A system, method, and apparatus for injection molding conductive bonding material into a plurality of cavities in a surface are disclosed. The method comprises aligning a fill head with a surface. The mold includes a plurality of cavities. The method further includes placing the fill head in substantial contact with the surface. At least a first gas is channeled about a first region of the fill head. The at least first gas has a temperature above a melting point of conductive bonding material residing in a reservoir thereby maintaining the conductive bonding material in a molten state. The conductive bonding material is forced out of the fill head toward the surface. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
The present invention relates to an injection molding of solder (IMS) process for preparing heterogenous solder bumps that contain a stand-off feature.
Abstract:
A system, method, and apparatus for injection molding conductive bonding material into a plurality of cavities in a surface are disclosed. The method comprises aligning a fill head with a surface. The mold includes a plurality of cavities. The method further includes placing the fill head in substantial contact with the surface. At least a first gas is channeled about a first region of the fill head. The at least first gas has a temperature above a melting point of conductive bonding material residing in a reservoir thereby maintaining the conductive bonding material in a molten state. The conductive bonding material is forced out of the fill head toward the surface. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
A method of producing standoffs in an injection molded solder (IMS) mold, which possesses cavities, each of which is filled with a solder paste using standard techniques, such as screening or IMS. This solder paste is heated to a reflow temperature at which the solder melts and forms a ball or sphere. Since solder pastes are known to reduce in volume due to the therein contained organic material burning off, the remaining solder ball will be significantly lower in volume than that of the cavity. A solder material having a lower melting point is then filled into the cavities about the solder balls. The mold and solder metal are then allowed to cool, resulting in the formation of a solid sphere of metal in the cavity surrounded by solder material of a lower melting point, which, upon transfer to a wafer, form the standoffs.
Abstract:
A method in forming high-temperature alloy solder standoff in a solder bumping process, such as in injection molded solder molds. The standoffs are formed in an injection molded solder mold, by means of pre-depositing a layer of a metal at select sites, such as some of the cavities which are formed in the surface of the mold, and thereafter, filling the mold cavities with solder, utilizing standard techniques as known in the technology. The particular metal, which is deposited in at least some of the mold cavities, will alloy with the solder during or after transfer, and will result in the formation of a higher temperature alloy solder at select locations in the mold cavities.
Abstract:
A system provides solder into cavities in a circuit supporting substrate. The system places a fill head in substantial contact with a circuit supporting substrate. The circuit supporting substrate includes at least one cavity. A linear motion or a rotational motion is provided to at least one of the circuit supporting substrate and the fill head while the fill head is in substantial contact with the circuit supporting substrate. Solder is forced out of the fill head toward the circuit supporting substrate. The solder is provided into the at least one cavity contemporaneous with the at least one cavity being in proximity to the fill head. The system brings a second circuit supporting substrate in close proximity to the circuit supporting substrate, at least one receiving pad on the second circuit supporting substrate substantially contacts the conductive bonding material of the at least one cavity.
Abstract:
A system, method, and apparatus of providing conductive bonding material into a plurality of cavities in a circuit supporting substrate is disclosed. The method comprises placing a fill head in substantial contact with a circuit supporting substrate. The circuit supporting substrate includes at least one cavity. A linear motion or a rotational motion is provided to at least one of the circuit supporting substrate and the fill head while the fill head is in substantial contact with the circuit supporting substrate. Conductive bonding material is forced out of the fill head toward the circuit supporting substrate. The conductive bonding material is provided into the at least one cavity contemporaneous with the at least one cavity being in proximity to the fill head.