Abstract:
A preferred embodiment of an electrical connector includes a housing, and a surface mount conductor positioned on the housing. The surface mount conductor has a surface mount end. The electrical connector also includes a substrate penetrable electrical conductor positioned on the housing. The substrate penetrable electrical conductor provides strain relief for the surface mount conductor.
Abstract:
An electronic component assembly includes a first electronic component, a second electronic component, and a grommet. The first electronic component includes a first electrical connector and at least one guide post. The second electronic component includes a printed circuit board, a second electrical connector having signal contacts connected to the printed circuit board with a ball grid array connection, and at least one guide post receptacle. The grommet is on the guide post. The guide post is adapted to be inserted into the guide post receptacle with the grommet providing a resilient spacer for buffering forces on the ball grid array connection when the first electrical connector is connected to the second electrical connector.
Abstract:
A printed circuit board electrical power contact for connecting a daughter printed circuit board to a mating contact on another electrical component. The power contact includes a main section; at least one daughter board electrical contact section extending from the main section; and at least one mating connector contact section extending from the main section. The mating connector contact section includes at least three forward projecting beams. A first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction. Two second ones of the beams are located on opposite sides of the first beam and extend outward in a second opposite direction as the second beams extend forward from the main section. The second beams have contact surfaces facing the second direction.
Abstract:
An electrical connector that includes first and second linear arrays of electrical contacts is disclosed. The first linear array is arranged in a first pattern of signal contacts and ground contacts. The second linear array is arranged in a second pattern of signal contacts and ground contacts that is different from the first pattern. The signal contacts define differential signal pairs. The signal contacts in the first linear array are elongated along a direction along which the first linear array extends.
Abstract:
An electrical connector that includes first and second linear arrays of electrical contacts is disclosed. The first linear array includes a first differential signal pair, a first ground contact lead adjacent to the first differential signal pair, and a second ground contact lead adjacent to the first ground contact lead. The second linear array is positioned adjacent to the first linear array, and includes a second differential signal pair, a third ground contact lead adjacent to the second differential signal pair, and a fourth ground contact lead adjacent to the third ground contact lead. The electrical connector is devoid of electrical shields between the first linear array and the second linear array.
Abstract:
A preferred embodiment of a pickup cap for an electrical connector includes a first portion having a substantially planar major surface. The pickup cap also includes a first and a second beam extending from the first portion for interferedly engaging projecting features on the electrical connector so that the pickup cap can be held on the electrical connector by frictional forces between the projecting features and the first and second beams.
Abstract:
A printed circuit board electrical power contact for connecting a daughter printed circuit board to a mating contact on another electrical component. The power contact includes a main section; at least one daughter board electrical contact section extending from the main section; and at least one mating connector contact section extending from the main section. The mating connector contact section includes at least three forward projecting beams. A first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction. Two second ones of the beams are located on opposite sides of the first beam and extend outward in a second opposite direction as the second beams extend forward from the main section. The second beams have contact surfaces facing the second direction.
Abstract:
A mid-plane is disclosed. The mid-plane includes a first printed circuit board having a plurality of plated vias adapted to receive tails attached to a first connector and having a plurality of unplated clearance holes adapted to receive tails attached to a second connector. The second printed circuit board has a plurality of plated vias adapted to receive tails attached to the second connector and has a plurality of unplated clearance adapted to receive tails attached to the first connector.
Abstract:
A protective housing removably attached to an electrical connector to prevent damage to contacts of the connector during, for example, shipping or handling of the electrical connector before the connector is connected with an electrical device such as a second electrical connector. The contact protector may include a pull portion of adhesive tape that abuts a housing of the electrical connector, creating an interference fit. The contact protector may include a handle integrated with the contact protector to facilitate removal of the contact protector from the electrical connector.
Abstract:
An electrical connector may include a connector housing and a plurality of identical leadframe assemblies received in the connector housing. Each of the leadframe assemblies may define a leadframe mating sequence. The leadframe assemblies may be arranged relative to one another to define a connector mating sequence that differs from the leadframe mating sequence. Each leadframe assembly may define a leadframe mounting footprint. The leadframe assemblies may be arranged relative to one another such that the leadframe mounting footprints are staggered, i.e., offset relative to one another.