Abstract:
An interconnected set of two or more stages of reactors to form a bio-reforming reactor that generates syngas for a number of different liquid fuel or chemical processes is discussed. A first stage includes a circulating fluidized bed reactor that is configured to cause a chemical devolatilization of the biomass into its reaction products of constituent gases, tars, chars, and other components, which exit through a reactor output from the first stage. A second stage of the bio-reforming reactor has an input configured to receive a stream of some of the reaction products that includes the constituent gases and at least some of the tars as raw syngas, and then chemically reacts the raw syngas within a vessel of the second stage to make the raw syngas from the first stage into a chemical grade syngas by further cracking the tars, excess methane, or both.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
Abstract:
Disclosed herein is an integrated plant including, in some embodiments, an interconnected set of two or more stages of reactors forming a bio-reforming reactor configured to generate syngas from wood-containing biomass. A first stage of the bio-reforming reactor is configured to cause a set of chemical reactions in the biomass to produce reaction products of constituent gases, tars, chars, and other components. The first stage includes a fluidized-bed gasifier, a fluidized-bed combustor, and a moving-bed filtration system, each of which includes media inputs and outputs to respectively receive and supply heat-absorbing media to another operation unit for recirculation in a media recirculation loop. The moving-bed filtration system includes a tar pre-reformer configured to capture and reform heavier tars into lighter tars for subsequent processing in one or more fuel-producing reactor trains. Fuel products produced by the one or more reactor trains have a biogenic content of between 50% and 100%.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. A carbon-dioxide gas feedback loop cooperates with a CO2 separation unit to supply a fraction of the CO2 gas that is removed from the chemical grade syngas produced from the reactor output of the BRR to supply extracted CO2 gas to the biomass feed system.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. A carbon-dioxide gas feedback loop cooperates with a CO2 separation unit to supply a fraction of the CO2 gas that is removed from the chemical grade syngas produced from the reactor output of the BRR to supply extracted CO2 gas to the biomass feed system.
Abstract:
An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
Abstract:
An interconnected set of two or more stages of reactors to form a bio-reforming reactor that generates syngas for a number of different liquid fuel or chemical processes is discussed. A first stage includes a circulating fluidized bed reactor that is configured to cause a chemical devolatilization of the biomass into its reaction products of constituent gases, tars, chars, and other components, which exit through a reactor output from the first stage. A second stage of the bio-reforming reactor has an input configured to receive a stream of some of the reaction products that includes the constituent gases and at least some of the tars as raw syngas, and then chemically reacts the raw syngas within a vessel of the second stage to make the raw syngas from the first stage into a chemical grade syngas by further cracking the tars, excess methane, or both.
Abstract:
Multiple stages of reactors form a bio-reforming reactor that generates chemical grade bio-syngas for any of 1) a methanol synthesis reactor, 2) a Methanol-to-Gasoline reactor train, 3) a high temperature Fischer-Tropsch reactor train, and 4) any combination of these three that use the chemical grade bio-syngas derived from biomass fed into the bio-reforming reactor. A tubular chemical reactor of a second stage has inputs configured to receive chemical feedstock from at least two sources, i) the raw syngas from the reactor output of the first stage via a cyclone, and ii) purge gas containing renewable carbon-based gases that are recycled back via a recycle loop as a chemical feedstock from any of 1) the downstream methanol-synthesis-reactor train, 2) the downstream methanol-to-gasoline reactor train, or 3) purge gas from both trains. The plant produces fuel products with solely 100% biogenic carbon content as well as fuel products with 50-100% biogenic carbon content.
Abstract:
Disclosed herein is an integrated plant including, in some embodiments, an interconnected set of two or more stages of reactors forming a bio-reforming reactor configured to generate syngas from wood-containing biomass. A first stage of the bio-reforming reactor is configured to cause a set of chemical reactions in the biomass to produce reaction products of constituent gases, tars, chars, and other components. The first stage includes a fluidized-bed gasifier, a fluidized-bed combustor, and a moving-bed filtration system, each of which includes media inputs and outputs to respectively receive and supply heat-absorbing media to another operation unit for recirculation in a media recirculation loop. The moving-bed filtration system includes a tar pre-reformer configured to capture and reform heavier tars into lighter tars for subsequent processing in one or more fuel-producing reactor trains. Fuel products produced by the one or more reactor trains have a biogenic content of between 50% and 100%.