Abstract:
An interconnected set of two or more stages of reactors to form a bio-reforming reactor that generates syngas for a number of different liquid fuel or chemical processes is discussed. A first stage includes a circulating fluidized bed reactor that is configured to cause a chemical devolatilization of the biomass into its reaction products of constituent gases, tars, chars, and other components, which exit through a reactor output from the first stage. A second stage of the bio-reforming reactor has an input configured to receive a stream of some of the reaction products that includes the constituent gases and at least some of the tars as raw syngas, and then chemically reacts the raw syngas within a vessel of the second stage to make the raw syngas from the first stage into a chemical grade syngas by further cracking the tars, excess methane, or both.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
Abstract:
A method, apparatus, and system for a solar-driven bio-refinery that may include a entrained-flow biomass feed system that is feedstock flexible via particle size control of the biomass. Some embodiments include a chemical reactor that receives concentrated solar thermal energy from an array of heliostats. The entrained-flow biomass feed system can use an entrainment carrier gas and supplies a variety of biomass sources fed as particles into the solar-driven chemical reactor. Biomass sources in a raw state or partially torrified state may be used, as long as parameters such as particle size of the biomass are controlled. Additionally, concentrated solar thermal energy can drive gasification of the particles. An on-site fuel synthesis reactor may receive the hydrogen and carbon monoxide products from the gasification reaction use the hydrogen and carbon monoxide products in a hydrocarbon fuel synthesis process to create a liquid hydrocarbon fuel.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant that may include a solar thermal receiver having a cavity with an inner wall, where the solar thermal receiver is aligned to absorb concentrated solar energy from one or more of 1) an array of heliostats, 2) solar concentrating dishes, and 3) any combination of the two. Some embodiments may include a solar-driven chemical reactor having multiple reactor tubes located inside the cavity of solar thermal receiver, wherein a chemical reaction driven by radiant heat occurs in the multiple reactor tubes, and wherein particles of biomass are gasified in the presence of a steam (H2O) carrier gas and methane (CH4) in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the solar thermal energy from the absorbed concentrated solar energy in the multiple reactor tubes.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
Abstract:
A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
Abstract:
An interconnected set of two or more stages of reactors to form a bio-reforming reactor that generates syngas for a number of different liquid fuel or chemical processes is discussed. A first stage includes a circulating fluidized bed reactor that is configured to cause a chemical devolatilization of the biomass into its reaction products of constituent gases, tars, chars, and other components, which exit through a reactor output from the first stage. A second stage of the bio-reforming reactor has an input configured to receive a stream of some of the reaction products that includes the constituent gases and at least some of the tars as raw syngas, and then chemically reacts the raw syngas within a vessel of the second stage to make the raw syngas from the first stage into a chemical grade syngas by further cracking the tars, excess methane, or both.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. A carbon-dioxide gas feedback loop cooperates with a CO2 separation unit to supply a fraction of the CO2 gas that is removed from the chemical grade syngas produced from the reactor output of the BRR to supply extracted CO2 gas to the biomass feed system.
Abstract:
A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. A carbon-dioxide gas feedback loop cooperates with a CO2 separation unit to supply a fraction of the CO2 gas that is removed from the chemical grade syngas produced from the reactor output of the BRR to supply extracted CO2 gas to the biomass feed system.
Abstract:
An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.