Abstract:
An image sensor device includes a semiconductor substrate having a front surface and a back surface; an array of pixels formed on the front surface of the semiconductor substrate, each pixel being adapted for sensing light radiation; an array of color filters formed over the plurality of pixels, each color filter being adapted for allowing a wavelength of light radiation to reach at least one of the plurality of pixels; and an array of micro-lens formed over the array of color filters, each micro-lens being adapted for directing light radiation to at least one of the color filters in the array. The array of color filters includes structure adapted for blocking light radiation that is traveling towards a region between adjacent micro-lens.
Abstract:
A device includes a semiconductor substrate, a plurality of micro-lenses disposed on the substrate, each micro-lens being configured to direct light radiation to a layer beneath the plurality of micro-lenses. The device further includes a transparent layer positioned between the plurality of micro-lenses and the substrate, the transparent layer comprising a structure that is configured to block light radiation that is traveling towards a region between adjacent micro-lenses, wherein the structure and the transparent material are coplanar at respective top surfaces and bottom surfaces thereof.
Abstract:
A method includes forming a plurality of pixels formed on a front surface of a semiconductor substrate, forming an array of color filters over the plurality of pixels, each color filter being adapted for allowing a wavelength of light radiation to reach at least one of the plurality of pixels, forming a plurality of micro-lenses over the array of color filters, and forming a second layer between the pixels and the color filters. The second layer further includes a structure adapted for blocking light radiation that is traveling towards a region between adjacent micro-lens, further wherein the plurality of micro-lenses are in contact with the array of color filters, and wherein the structure and the transparent material are coplanar at respective top surfaces thereof, and further wherein the structure directly contacts a bottom surface of at least one of the color filters.
Abstract:
A semiconductor structure includes a first substrate, a second substrate, a first sensing structure over the first substrate, and between the first substrate and the second substrate, a via extending through the second substrate, and a second sensing structure over the second substrate, and including an interconnect structure electrically connected with the via, and a sensing material at least partially covering the interconnect structure.
Abstract:
Semiconductor devices and methods of forming the same are provided. A method according to the present disclosure includes forming a first wafer including a plurality of electronic integrated circuits (EICs), forming a second wafer including a plurality of photonic integrated circuits (PICs), bonding the first wafer to the second wafer to form a first stacked wafer. The bonding of the first wafer to the second wafer includes vertically aligning each of the plurality of the EICs with one of the plurality of the PICs.
Abstract:
Semiconductor devices and methods of forming the same are provided. A method according to the present disclosure includes forming a first wafer including a plurality of electronic integrated circuits (EICs), forming a second wafer including a plurality of photonic integrated circuits (PICs), bonding the first wafer to the second wafer to form a first stacked wafer. The bonding of the first wafer to the second wafer includes vertically aligning each of the plurality of the EICs with one of the plurality of the PICs.
Abstract:
A method includes forming a plurality of pixels formed on a front surface of a semiconductor substrate, forming an array of color filters over the plurality of pixels, each color filter being adapted for allowing a wavelength of light radiation to reach at least one of the plurality of pixels, forming a plurality of micro-lenses over the array of color filters, and forming a second layer between the pixels and the color filters. The second layer further includes a structure adapted for blocking light radiation that is traveling towards a region between adjacent micro-lens, further wherein the plurality of micro-lenses are in contact with the array of color filters, and wherein the structure and the transparent material are coplanar at respective top surfaces thereof, and further wherein the structure directly contacts a bottom surface of at least one of the color filters.
Abstract:
According to one example, a device includes a semiconductor substrate. The device further includes a plurality of color filters disposed above the semiconductor substrate. The device further includes a plurality of micro-lenses disposed above the set of color filters. The device further includes a structure that is configured to block light radiation that is traveling towards a region between adjacent micro-lenses. The structure and the color filters are level at respective top surfaces and bottom surfaces thereof.
Abstract:
According to one example, a device includes a semiconductor substrate. The device further includes a plurality of color filters disposed above the semiconductor substrate. The device further includes a plurality of micro-lenses disposed above the set of color filters. The device further includes a structure that is configured to block light radiation that is traveling towards a region between adjacent micro-lenses. The structure and the color filters are level at respective top surfaces and bottom surfaces thereof.
Abstract:
A semiconductor device includes a device substrate and a conductive capping substrate. The device substrate includes at least one micro-electro mechanical system (MEMS) device. The conductive capping substrate is bonded to the device substrate and includes a cap portion covering the MEMS device, and a conductor portion in electrical contact with the device substrate.