Abstract:
A sensor assembly and sensing method is provided for proximity detection for assessing an attachment state of a sensing probe with respect to a subject. A probe is coupled to an electronic probe controller. The probe includes a proximity sensor having a passive energy storing circuit element, and a biological sensor receptacle configured to receive a biological sensor for sensing a biological characteristic of an object. The electronic probe controller excites a circuit network incorporating the proximity sensor with an excitation signal and determines a characteristic of the circuit network that is excited by the excitation signal. The electronic probe controller further generates a proximity indication indicating whether the probe is attached to the object based on the characteristic of the circuit network.
Abstract:
An optical probe comprising a light source providing a light that is directed along a first axis; a diffusive element positioned proximate to the light source to receive the light and to diffuse the light as it exits the diffusive element; and a directional optical element directing the light exiting the diffusive element along at least one of the first axis and a second axis generally perpendicular to the first axis to project the light out of the optical probe and onto a subject.
Abstract:
A sensor assembly and sensing method is provided for proximity detection for assessing an attachment state of a sensing probe with respect to a subject. A probe is coupled to an electronic probe controller. The probe includes a proximity sensor having a passive energy storing circuit element, and a biological sensor receptacle configured to receive a biological sensor for sensing a biological characteristic of an object. The electronic probe controller excites a circuit network incorporating the proximity sensor with an excitation signal and determines a characteristic of the circuit network that is excited by the excitation signal. The electronic probe controller further generates a proximity indication indicating whether the probe is attached to the object based on the characteristic of the circuit network.
Abstract:
The present disclosure provides systems and methods for multi-distance, multi-wavelength diffuse correlation spectroscopy (MD-MW DCS). The systems and methods can include two, three, or more different wavelengths and two, three, or more different source-detector distances. The dynamics of a target medium can be determined using detected signals at the different wavelengths and different source-detector distances.