Abstract:
A method of making a Coriolis vibratory gyroscope with a three dimensional mushroom resonator element includes defining a cavity in a substrate wafer; bonding a cap wafer onto the substrate over the cavity from which cap wafer the resonator element will be formed; heating the substrate and cap wafer to generate a pressure build-up within the cavity; plastically deforming the cap wafer by the pressure build-up to form the mushroom resonator element having a perimeter around the mushroom resonator element; releasing the three dimensional mushroom resonator element at the perimeter by selectively removing material so that the perimeter of mushroom resonator element is free to vibrate; and disposing a layer of conductive material on the mushroom resonator element to form electrodes thereon for use in driving and sensing vibrations of the mushroom resonator element and its perimeter. A microgyroscope made by such a method is also included within the embodiments.
Abstract:
The improvement includes an outer proof mass having a corresponding center of mass; and an inner proof mass having a corresponding center of mass, where the corresponding centers of mass of the outer proof mass and the inner proof mass are approximately co-located. Thus, a double Foucault pendulum is essentially provided in a micromachined gyroscope.
Abstract:
A toroidal ring gyroscope with a robust outer perimeter anchor and a distributed suspension system. The vibrational energy in the design is concentrated towards the innermost ring, and the device is anchored at the outer perimeter. The distributed support structure prevents vibrational motion propagating to the outer anchor, which helps trap the vibrational energy within the gyroscope and provides a Q-factor of >100,000 at a compact size of 1760 μm. Due to the parametric pumping effect, energy added to each mode is proportional to the existing amplitude of the respective mode. As a result, errors associated with finding the orientation of the standing wave and x-y drive gain drift are bypassed. The toroidal ring gyroscope can be fabricated using any standard silicon on insulator process. Due to the high Q-factor and robust support structure, the device can potentially be instrumented in high-g environments that require high angular rate sensitivity.
Abstract:
The improvement includes an outer proof mass having a corresponding center of mass; and an inner proof mass having a corresponding center of mass, where the corresponding centers of mass of the outer proof mass and the inner proof mass are approximately co-located. Thus, a double Foucault pendulum is essentially provided in a micromachined gyroscope.
Abstract:
An apparatus and method for wafer-level hermetic packaging of MicroElectroMechanical Systems (MEMS) devices of different shapes and form factors is presented in this disclosure. The method is based on bonding a glass cap wafer with fabricated micro-glassblown “bubble-shaped” structures to the substrate glass/Si wafer. Metal traces fabricated on the substrate wafer serve to transfer signals from the sealed cavity of the bubble to the outside world. Furthermore, the method provides for chip-level packaging of MEMS three dimensional structures. The packaging method utilizes a micro glass-blowing process to create “bubbleshaped” glass lids. This new type of lids is used for vacuum packaging of three dimensional MEMS devices, using a standard commercially available type of package.
Abstract:
A method of making a Coriolis vibratory gyroscope with a three dimensional mushroom resonator element includes defining a cavity in a substrate wafer; bonding a cap wafer onto the substrate over the cavity from which cap wafer the resonator element will be formed; heating the substrate and cap wafer to generate a pressure build-up within the cavity; plastically deforming the cap wafer by the pressure build-up to form the mushroom resonator element having a perimeter around the mushroom resonator element; releasing the three dimensional mushroom resonator element at the perimeter by selectively removing material so that the perimeter of mushroom resonator element is free to vibrate; and disposing a layer of conductive material on the mushroom resonator element to form electrodes thereon for use in driving and sensing vibrations of the mushroom resonator element and its perimeter. A microgyroscope made by such a method is also included within the embodiments.
Abstract:
A method for fabricating an environmentally robust micro-wineglass gyroscope includes the steps of stacking and bonding of at least an inner glass layer and an outer glass layer to a substrate wafer; plastically deforming the inner glass layer into a mushroom-shaped structure and deforming the outer glass layer into a shield capable of extending over the inner glass layer, while leaving the inner and outer glass layers connectable at a central post location; removing the substrate layer and a portion of the inner glass layer so that a perimeter of the inner glass layer is free; and bonding the deformed inner and outer glass layers to a handle wafer. The resulting structure is an environmentally robust micro-wineglass gyroscope which has a double ended supported central post location for the mushroom-shaped structure of the inner glass layer.
Abstract:
A high temperature micro-glassblowing process and a novel inverted-wineglass architecture that provides self-aligned stem structures. The fabrication process involves the etching of a fused quartz substrate wafer. A TSG or fused quartz device layer is then bonded onto the fused quartz substrate, creating a trapped air pocket or cavity between the substrate and the TSG device layer. The substrate and TSG device layer 14 are then heated at an extremely high temperature of approximately 1700° C., forming an inverted wineglass structure. Finally, the glassblown structure is cut or etched from the substrate to create a three dimensional wineglass resonator micro-device. The inverted wineglass structure may be used as a high performance resonator for use as a key element in precision clock resonators, dynamic MEMS sensors, and MEMS inertial sensors.
Abstract:
A toroidal ring gyroscope with a robust outer perimeter anchor and a distributed suspension system. The vibrational energy in the design is concentrated towards the innermost ring, and the device is anchored at the outer perimeter. The distributed support structure prevents vibrational motion propagating to the outer anchor, which helps trap the vibrational energy within the gyroscope and provides a Q-factor of >100,000 at a compact size of 1760 μm. Due to the parametric pumping effect, energy added to each mode is proportional to the existing amplitude of the respective mode. As a result, errors associated with finding the orientation of the standing wave and x-y drive gain drift are bypassed. The toroidal ring gyroscope can be fabricated using any standard silicon on insulator process. Due to the high Q-factor and robust support structure, the device can potentially be instrumented in high-g environments that require high angular rate sensitivity.
Abstract:
A method for fabricating an environmentally robust micro-wineglass gyroscope includes the steps of stacking and bonding of at least an inner glass layer and an outer glass layer to a substrate wafer; plastically deforming the inner glass layer into a mushroom-shaped structure and deforming the outer glass layer into a shield capable of extending over the inner glass layer, while leaving the inner and outer glass layers connectable at a central post location; removing the substrate layer and a portion of the inner glass layer so that a perimeter of the inner glass layer is free; and bonding the deformed inner and outer glass layers to a handle wafer. The resulting structure is an environmentally robust micro-wineglass gyroscope which has a double ended supported central post location for the mushroom-shaped structure of the inner glass layer.