Abstract:
A touch panel is provided. The touch panel includes a first substrate and a luminous flux adjusting portion. The first substrate has a top surface, in which the top surface has at least one semi-transparent area. The luminous flux adjusting portion is disposed on the first substrate and located in the at least one semi-transparent area, in which the luminous flux adjusting portion has a continuous light-impermissible pattern. Embodiments of the present invention uses the luminous flux adjusting portion to control the luminous flux of the semi-transparent area for achieving good consistence and adjustability of the luminous flux of the semi-transparent area.
Abstract:
A touch display device has portions defining a display area, and a non-display area. The touch display device comprises a display module, a touch panel, and a shielding component. The display module defines at least one light leakage area. The display module generates at least one leaked light ray diverging from the light leakage area. The touch panel module faces the display module and includes a cover structure and a touch sensing structure. The cover structure includes a cover and a decorative layer. The touch sensing structure disposed between the cover structure and the display module. The shielding component disposed between the decorative layer and the display module such that the shielding component shields the traveling path of at least one leaked light ray. The touch display device can prevent light leakage via the positioning of the shielding component.
Abstract:
The present disclosure provides a touch-panel display device. The touch-panel display device comprises a substrate, a display module, a sensing module and a function layer. The substrate includes a first surface and a second surface on opposite sides of the substrate, respectively. The display module is proximal to the first surface of the substrate, and the sensing module is disposed between the display module and the substrate. The function layer, disposed on either the first surface or the second surface of the substrate, is configured to polarize light emitted from the display module towards the substrate.
Abstract:
A touch panel is provided. The touch panel includes at least a bonding pad, a touch-sensing structure and at least a protection component. The bonding pad has a first long side, a first short side, a second long side, and a second short side. The first long side is adjacent to the first short side and the second short side, and the first long side is opposite to the second long side. A touch-sensing structure is electrically connected to the first short side of the bonding pad. The protection component is disposed at the first long side and the second long side.
Abstract:
An electrode structure is provided. The electrode structure comprises a plurality of first conductive cells and second conductive cells separated from each other and disposed on a substrate; a plurality of first conductive lines connecting adjacent said first conductive cells and a plurality of second conductive lines connecting adjacent said second conductive cells; wherein each said second conductive line comprises a conducting element and a pair of second conductive branches disposed at two sides of said conducting elements and connecting said conducting element to adjacent said second conductive cells; said first conductive lines and said second conductive lines are insulated and intersected. The method of forming an electrode structure is also provided.
Abstract:
A touch panel having a central region and a peripheral region, including: a substrate; a touch sensing layer disposed on the substrate; a wiring layer disposed on the peripheral region of the substrate electrically connected to the touch sensing layer; a first decorative layer disposed on the peripheral region and covering the wiring layer; a transparent adhesive layer disposed on the touch sensing layer and the first decorative layer; a cover substrate disposed on the transparent adhesive layer; and a second decorative layer disposed between the cover substrate and the transparent adhesive layer, and corresponding to the peripheral region.
Abstract:
A touch device including a touch panel is provided. The touch panel includes a substrate having a touching surface and a bonding surface opposite to the touching surface, and further having a viewable area and a non-viewable area surrounding the viewable area. A colorful decoration layer is disposed on the bonding surface of the substrate and at the non-viewable area. The colorful decoration layer has a gradient side adjacent to the viewable area. A planarization layer completely covers the gradient side of the colorful decoration layer and the bonding surface of the substrate. A touch sensing layer is disposed on the planarization layer and extended from the viewable area to the non-viewable area. Further, a method for fabricating a touch device is provided.
Abstract:
A touch-sensor structure includes a substrate having a plurality of grooves formed thereon. A plurality of first axial electrode strips are disposed in the grooves individually. A plurality of second axial electrode strips are disposed on the substrate and intersect with the first axial electrode strips. An insulating layer fills in the grooves and is disposed at the intersections of the first and second axial electrode strips. Furthermore, the manufacturing method of the touch-sensor structure is provided. The insulating layer is disposed in the grooves of the substrate without a protuberant height on the substrate. Therefore, it can overcome a breakage issue in conventional conductive bridges.
Abstract:
A touch panel is provided. The touch panel includes at least a bonding pad, a touch-sensing structure and at least a protection component. The bonding pad has a first long side, a first short side, a second long side, and a second short side. The first long side is adjacent to the first short side and the second short side, and the first long side is opposite to the second long side. A touch-sensing structure is electrically connected to the first short side of the bonding pad. The protection component is disposed at the first long side and the second long side.
Abstract:
The present disclosure discloses a bonding structure, wherein a plurality of first bonding pads is located on a first substrate. A second substrate is disposed to partially face first substrate. A plurality of second bonding pads is located on second substrate with one side, and partially overlapped with the first bonding pads with the other side to form a bonding region and a peripheral region located in the periphery of the bonding region. An anisotropic conductive film is disposed between first bonding pads and second bonding pads. The anisotropic conductive film includes a plurality of conductive particles. At least one groove structure is disposed in the periphery region. When the conductive particles of the anisotropic conductive film are moving during the bonding process, the groove structure can accommodate the conductive particles moved hereto. Accordingly, short circuit caused by accumulation of the conductive particles in the bonding process can be avoided.