Abstract:
Techniques are provided for forming thin film transistors having a polycrystalline silicon active layer formed by metal-induced crystallization (MIC) of amorphous silicon in an oxidizing atmosphere. In an aspect, a transistor device, is provided that includes a source region and a drain region formed on a substrate, and an active channel region formed on the substrate and electrically connecting the source region and the drain region. The active channel region is formed with a polycrystalline silicon layer having resulted from annealing an amorphous silicon layer formed on the substrate and having a metal layer formed thereon, wherein the annealing of the amorphous silicon layer was at least partially performed in an oxidizing ambience, thereby resulting in crystallization of the amorphous silicon layer to form the polycrystalline silicon layer.
Abstract:
A method of fabricating a hybrid organic-inorganic halide perovskite film includes depositing a precursor layer onto a substrate, the precursor layer comprising metal halide, placing an organic source-material layer onto a boat, the organic source-material layer comprising an organic cation, and annealing the precursor layer and the organic source-material layer in a vacuum chamber enclosed in a constrained volume.
Abstract:
An apparatus is provided that includes a substrate and source and drain regions within an annealed active layer having resulted from an annealing of an active layer comprising metal-oxide and formed on the substrate, and an impermeable layer over the source and drain regions of the annealed active layer, wherein the annealing resulting in the annealed active layer was performed with the impermeable layer over portions of the active layer corresponding to the source and drain regions, thereby resulting in a reduction of a resistivity of the source and drain regions of the annealed active layer relative to the active layer. In another aspect, a junctionless transistor is provided wherein the entire active area has a low resistivity based on annealing of an active layer including metal oxide while uncovered or at least partially covered with layers of various gas permeability under oxidizing or non-oxidizing conditions.
Abstract:
This disclosure relates generally to the three-dimensional (3D) integrated thin-film transistors (TFTs) with silicon and metal-oxide (MO) semiconductors as the active layers. In one or more embodiments, an apparatus is provided that comprises a first transistor comprising a silicon active layer, and a second transistor comprising a metal oxide active layer. The second transistor is vertically stacked on the first transistor, and the first transistor and the second transistor share a gate electrode formed between the silicon active layer and the metal oxide active layer. With these embodiments, the gate electrode corresponds to a top gate of the first transistor and a bottom gate of the second transistor.
Abstract:
Thin film transistors are provided that include a metal oxide active layer with source and drain regions having a reduced resistivity relative to the metal oxide based on doping of the source and drain regions at room temperature. In an aspect, a transistor structure is provided, that includes a substrate, and source and drain regions within a doped active layer having resulted from doping of an active layer comprising metal-oxide and formed on the substrate, wherein the doped active layer was doped at room temperature and without thermal annealing, thereby resulting in a reduction of a resistivity of the source and drain regions of the doped active layer relative to the active layer prior to the doping. In an aspect, the source and drain regions have a resistivity of about 10.0 mΩ·cm after being doped with stable ions and without subsequent activation of the ions via annealing.
Abstract:
A thin film transistor includes: a source region; a drain region; and a polycrystalline thin film active channel region connected to the source region and the drain region, the active channel region comprising grains and being doped with a two-dimensional pattern comprising a plurality of doped regions, the plurality of doped regions each comprising at least portions of a plurality of the grains and at least one grain boundary.
Abstract:
Aspects describe a vertical metal-oxide thin-film transistor with multiple-junction channel and a method to fabricate the same. In one example, the vertical transistor comprises a substrate, an interconnecting electrode and source and drain electrodes separated by a spacer. The vertical transistor also includes a metal oxide active layer formed over the interconnecting electrode and the source and drain electrodes and adjacent to the interconnecting electrode, the spacer, and the source and drain electrodes. Further, the vertical transistor includes a gate stack adjacent to the metal oxide active layer and a multiple-junction channel region provided within the metal oxide active layer adjacent to the gate stack.
Abstract:
Techniques are provided for forming thin film transistors having a polycrystalline silicon active layer formed by metal-induced crystallization (MIC) of amorphous silicon in an oxidizing atmosphere. In an aspect, a transistor device, is provided that includes a source region and a drain region formed on a substrate, and an active channel region formed on the substrate and electrically connecting the source region and the drain region. The active channel region is formed with a polycrystalline silicon layer having resulted from annealing an amorphous silicon layer formed on the substrate and having a metal layer formed thereon, wherein the annealing of the amorphous silicon layer was at least partially performed in an oxidizing ambience, thereby resulting in crystallization of the amorphous silicon layer to form the polycrystalline silicon layer.
Abstract:
Described herein is a microchannel that is formed beneath and parallel to a surface of a silicon substrate. Silicon migration technology is utilized to form a microchannel that is buried beneath the surface of the silicon substrate. Etching opens at least one end of the microchannel. Oxidization is utilized through the open end of the microchannel to facilitate a controlled diameter of the microchannel.