Abstract:
A substrate processing apparatus includes a processing unit and a control unit. The processing unit is configured to perform an etching processing by immersing a substrate in a processing liquid containing phosphoric acid and a silicon-containing compound. The control unit is configured to control the processing liquid such that the substrate is processed, in a first processing time of the etching processing, with the processing liquid having a first phosphoric acid concentration and a first silicon concentration, and the substrate is processed, in a second processing time later than the first processing time, with the processing liquid having a second preset phosphoric acid concentration lower than the first phosphoric acid concentration and a second preset silicon concentration lower than the first silicon concentration or with the processing liquid having the second preset phosphoric acid concentration and the first silicon concentration.
Abstract:
Disclosed is a separation and regeneration apparatus including: a supercritical processing unit configured to generate a mixed gas including a first fluorine-containing organic solvent having a first boiling point and a second fluorine-containing organic solvent having a second boiling point lower than the first boiling point; and a distillation tank configured to store hot water having a temperature between the first boiling point and the second boiling point, in which the mixed gas is input into the hot water to be separated into the first fluorine-containing organic solvent in a liquid state and the second fluorine-containing organic solvent in a gas state, in which an introduction line configured to guide the mixed gas from the supercritical processing unit to the distillation tank is provided and a distal end of the introduction line is disposed in the hot water.
Abstract:
A substrate processing apparatus performs: a pressure raising process of raising a pressure within the processing container to a processing pressure higher than a critical pressure of the processing fluid, after the substrate is accommodated in the processing container; and a circulation process of supplying the processing fluid to the processing container and discharging the processing fluid from the processing container while keeping a pressure at which the processing fluid is maintained in the supercritical state, within the processing container. In the pressure raising process, the supply of the processing fluid from the second fluid supply unit is stopped and the processing fluid is supplied from the first fluid supply unit into the processing container until at least the pressure within the processing container reaches the critical pressure. In the circulation process, the processing fluid is supplied into the processing container from the second fluid supply unit.
Abstract:
A substrate processing apparatus according to an embodiment includes a substrate processing tank, a temperature adjustment unit, and a controller. The substrate processing tank is configured to perform an etching processing by immersing a substrate in a phosphoric acid processing liquid therein. The temperature adjustment unit is configured to adjust the temperature of the phosphoric acid processing liquid. The controller is configured to control the temperature adjustment unit to lower the temperature of the phosphoric acid processing liquid as the etching processing proceeds.
Abstract:
A substrate processing apparatus and a substrate processing method capable of suppressing precipitation of a silicon oxide while improving selectivity for etching a silicon nitride film are provided. The substrate processing apparatus includes a substrate processing tub, a phosphoric acid processing liquid supply unit, a circulation path, a SiO2 precipitation inhibitor supply unit and a mixing unit. The phosphoric acid processing liquid supply unit is configured to supply a phosphoric acid processing liquid used in performing an etching processing in the substrate processing tub. The circulation path is configured to circulate the phosphoric acid processing liquid supplied into the substrate processing tub. The SiO2 precipitation inhibitor supply unit is configured to supply a SiO2 precipitation inhibitor into the circulation path. The mixing unit is configured to mix a silicon-containing compound into the phosphoric acid processing liquid before the phosphoric acid processing liquid is supplied into the circulation path.
Abstract:
A substrate processing apparatus according to an exemplary embodiment to the present disclosure includes: a main body which has therein a processing space capable of accommodating the substrate; a holding unit which holds the substrate in the main body; a supply unit which is provided at a side of the substrate held by the holding unit and supplies the processing fluid into the processing space; a discharge unit which discharges the processing fluid from an inside of the processing space; and a flow path limiting unit which limits a lower end of a flow path at an upstream side which is formed while the processing fluid flows from the supply unit to the discharge unit. Further, an upper end of the flow path limiting unit is disposed at a position higher than the upper surface of the substrate held by the holding unit.
Abstract:
During at least part of a time period for a pressure increasing step of increasing a pressure inside a processing container from a pressure lower than a critical pressure of a processing fluid to a pressure higher than the critical pressure, pressure increasing is performed by supplying the processing fluid into the processing container from a fluid supply source while discharging the processing fluid from the processing container at a controlled discharge flow rate. Particles attached to the surfaces of members inside the processing container travel upward by the supply of the processing fluid into the processing container from the fluid supply source. The particles are discharged along with the processing fluid from the processing container.
Abstract:
A supercritical drying method for a semiconductor substrate is disclosed. The method may include introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method may also include performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
Abstract:
Disclosed is a substrate processing method including: supplying a first solvent including a fluorine-free organic solvent, to a workpiece; supplying a second solvent including a fluorine-containing organic solvent that is not dissolved with the first solvent at a normal temperature, and is dissolved with the first solvent at a temperature higher than the normal temperature; and replacing the first solvent with the second solvent while dissolving the first solvent and the second solvent by heating the first solvent and the second solvent to a dissolution temperature or higher.
Abstract:
A substrate processing apparatus according to an embodiment includes a substrate processing tank, a temperature adjustment unit, and a controller. The substrate processing tank is configured to perform an etching processing by immersing a substrate in a phosphoric acid processing liquid therein. The temperature adjustment unit is configured to adjust the temperature of the phosphoric acid processing liquid. The controller is configured to control the temperature adjustment unit to lower the temperature of the phosphoric acid processing liquid as the etching processing proceeds.