Abstract:
An apparatus for joint analog and digital interference cancellation includes a receiver configured to receive an analog reference interfering signal on a reference path, and a sum of an analog interference signal and an analog signal of interest on an antenna path. An analog interference canceller may be configured to produce an analog partially interference-cancelled signal using the analog reference interfering signal and the sum of the analog interference signal and the analog signal of interest. A first analog-to-digital converter may be configured to digitize the analog reference interfering signal to produce a digital reference interfering signal. A second analog-to-digital converter may be configured to digitize the analog partially interference-cancelled signal to produce a digital partially interference-cancelled signal. A digital interference canceller may be configured to produce an interference-cancelled signal using the digital reference interfering signal and the digital partially interference-cancelled signal.
Abstract:
A method for secure key agreement among a subset of a plurality of transceivers includes generating a first ordered subset of a plurality of keys kλj, where j=0 to S. Each of the subset of the plurality of transceivers may possess at least one of the plurality of keys kλj from the first ordered subset. Each of the subset of the plurality of transceivers possessing one or more keys kλi, i=1 to S, also possesses at least one key from a second ordered subset of the plurality of keys kλj, j=0 to i−1. A key with index λ0 is designated as a group key. A binary sum of the group key kλ0 and a key kλj, where j≠0, is transmitted from one or more of the subset of the plurality of transceivers that possesses the group key kλ0.
Abstract:
An apparatus for joint analog and digital interference cancellation includes a receiver configured to receive an analog reference interfering signal on a reference path, and a sum of an analog interference signal and an analog signal of interest on an antenna path. An analog interference canceller may be configured to produce an analog partially interference-cancelled signal using the analog reference interfering signal and the sum of the analog interference signal and the analog signal of interest. A first analog-to-digital converter may be configured to digitize the analog reference interfering signal to produce a digital reference interfering signal. A second analog-to-digital converter may be configured to digitize the analog partially interference-cancelled signal to produce a digital partially interference-cancelled signal. A digital interference canceller may be configured to produce an interference-cancelled signal using the digital reference interfering signal and the digital partially interference-cancelled signal.
Abstract:
A system and method is presented for establishing relayed communications involving (1) sending a request message from a source node to a destination node through a plurality of intermediate nodes, (2) receiving the request message at the destination node, and (3) sending an acceptance message from the destination node to the source node through at least a subset of the intermediate nodes, wherein an intermediate node relays the request or acceptance message by receiving the message and re-transmitting the message, and wherein the intermediate node is capable of receiving the message from more than one other intermediate node.
Abstract:
Systems and methods are presented for controlling the peak-to-average-power of a baseband orthogonal-frequency-domain multiplexing (OFDM) signal by designating a subset of the available subcarriers as information-bearing data-subcarriers, and loading remaining subcarriers by symbols that are a function of the symbols loading the data-subcarriers. At the receiver, the data-dependent subcarriers are optionally combined with data-subcarriers to increase error protection.
Abstract:
A method for secure key agreement among a subset of a plurality of transceivers includes generating a first ordered subset of a plurality of keys kλj, where j=0 to S. Each of the subset of the plurality of transceivers may possess at least one of the plurality of keys kλj from the first ordered subset. Each of the subset of the plurality of transceivers possessing one or more keys kλi, i=1 to S, also possesses at least one key from a second ordered subset of the plurality of keys kλj, j=0 to i−1. A key with index λ0 is designated as a group key. A binary sum of the group key kλ0 and a key kλj, where j≠0, is transmitted from one or more of the subset of the plurality of transceivers that possesses the group key kλ0.
Abstract:
Systems and methods are presented for controlling the peak-to-average-power of a baseband orthogonal-frequency-domain multiplexing (OFDM) signal by designating a subset of the available subcarriers as information-bearing data-subcarriers, and loading remaining subcarriers by symbols that are a function of the symbols loading the data-subcarriers. At the receiver, the data-dependent subcarriers are optionally combined with data-subcarriers to increase error protection.
Abstract:
A system and method is presented for establishing relayed communications involving (1) sending a request message from a source node to a destination node through a plurality of intermediate nodes, (2) receiving the request message at the destination node, and (3) sending an acceptance message from the destination node to the source node through at least a subset of the intermediate nodes, wherein an intermediate node relays the request or acceptance message by receiving the message and re-transmitting the message, and wherein the intermediate node is capable of receiving the message from more than one other intermediate node.
Abstract:
Systems and methods are presented for controlling the peak-to-average-power of a baseband orthogonal-frequency-domain multiplexing (OFDM) signal by designating a subset of the available subcarriers as information-bearing data-subcarriers, and loading remaining subcarriers by symbols that are a function of the symbols loading the data-subcarriers. At the receiver, the data-dependent subcarriers are optionally combined with data-subcarriers to increase error protection.