Abstract:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
Abstract:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
Abstract:
The following describes data structures, communication protocol formats and process flows for controlling and facilitating secure communications between the nodes of a mesh network, such as utility meters and gateway nodes comprising a utility network. The enabled processes include association, information exchange, route discovery and maintenance and the like for instituting and maintaining a secure mesh network.
Abstract:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
Abstract:
A method for utilizing a default channel during unused periods of timeslots to join, communicate, and/or synchronize with a network comprising determining a time slot is idle; in response to determining the time slot is idle tuning to a default channel while the timeslot is idle; receiving a message on the default channel; and optionally transmitting a subsequent message on the same channel.
Abstract:
A method for dynamic track allocation in a network comprising accessing a message to be routed to a target node; receiving from a path computation element (PCE), a track from the first node to the target node, wherein the track includes at least any intermediate nodes that provide a path from the first node to the target node, wherein the track comprises one or more allocated link resources to the first node, to any intermediate nodes, and to the target node; assigning a track identifier and an expiration time to the defined track; appending the assigned link resources, expiration time and track identifier to the message; and transmitting the message from the first node to the target node, wherein transmitting causes subsequent messages with the same assigned track identifier to be routed through the network along the same route and using the link resources configured by the message.
Abstract:
A process for communicating utility-related data over at least one network is described, the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram, protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
Abstract:
A process for routing data frames from a first node to a second node within a network is provided. The process includes: a tree routing sub-process, a source routing sub-process, a temporary routing sub-process and a mesh routing sub-process, wherein the particular sub-process for routing a data frame from the first node the second nodes is selected in accordance with the following logic executed on a processor: if the data frame has a source route header the source routing sub-process is selected; if there is an entry for the target address in a temporary routing table, the temporary routing sub-process is selected; if the second node is a coordinator node, the tree routing sub-process is selected; if the second node is not a coordinator node, the mesh routing sub-process is selected.
Abstract:
A process for communicating utility-related data over at least one network is described. the process includes: collecting utility-related data at a hub device during a first predetermined period of time; securing the utility-related data at the hub device using digital envelopes during the first predetermined period of time; initiating by the hub device an autonomous wake up process during a second predetermined period of time; sending the secure utility-related data over a first network to a designated server via at least one User Datagram protocol (“UDP”) message during the second predetermined period of time; and receiving an acknowledgement of receipt message of the at least one UDP message from the designated server; wherein the first and second predetermined periods of time typically do not overlap, but may overlap.
Abstract:
Devices and systems control energy usage in accordance with instructions from a head end system. A device may be instructed to cease energy consumption. Another device may allow users to override some instructions. Messages may be provided to users to request the cessation of energy consumption; the users may, but need not comply.