Abstract:
Systems and methods are disclosed for a 3D microfluidic channel manufacturing device comprising: a main build platform and an auxiliary build platform, for printing microfluidic channels in a 3D printed product.
Abstract:
The present disclosure describes systems and techniques relating to computer numerical control (CNC) additive manufacturing. According to an aspect, a tooltip for an additive manufacturing machine includes: an input end configured to receive light from an optical system; and an output end configured to deliver the light to a workpiece on a build platform in the additive manufacturing machine; wherein the output end of the tooltip is configured to be immersed in a liquid resin in a tank of the additive manufacturing machine, and the output end defines a linear opening through which the light is delivered to the workpiece on the build platform.
Abstract:
A method of multi-material 3D printing is performed by an apparatus comprising at least one printhead device; a build platform; a light source; and a computing unit comprising a non-transitory computer-readable medium encoded with program instructions for controlling the at least one printhead device; the build platform; and the light source to perform the method of multi-material 3D printing. In various embodiments, each printhead device comprises a coating section, a curing section, a cleaning section, and optionally, a post-curing section. Each printhead device is configured to perform each of these steps, with the multiple printheads engaged in fabricating a multi-material part layer-by-layer.
Abstract:
Methods, systems, and apparatus for multi-scale stereolithography. The apparatus includes a light source for providing a laser beam having a first shape and a first size. The apparatus includes a dynamic aperture having multiple apertures that are of the same or different sizes or shapes. The dynamic aperture is configured to receive the laser beam and modify at least one of the shape or the size of the laser beam. The apparatus includes a platform for holding an object to be printed. The apparatus includes a processor connected to at least one of the light source, the dynamic aperture or the platform. The processor is configured to move the platform to direct the laser beam or direct the laser beam to cure resin onto the object to be printed using a first aperture of the multiple apertures to form the object.
Abstract:
Methods, systems, and apparatus including medium-encoded computer program products for performing additive manufacturing (AM) using continuous resin flow based mask video projection stereolithography (MVP-SL) According to an aspect, a system for additive manufacturing of an object in three dimensions consisting of an X dimension, a Y dimension, and a Z dimension, the system comprising: a tank configured to contain a liquid resin; a first translation stage coupled with the tank, the first translation stage being configured to move the tank in the X dimension, the Y dimension, or both; a second translation stage coupled with a build platform, the second translation stage being configured to move the build platform in the Z dimension; and a computer control system to cause the second translation stage to elevate the build platform in the Z dimension simultaneously with causing the first translation stage to perform the sliding motion.
Abstract:
Methods, systems, and apparatus including medium-encoded computer program products for performing additive manufacturing (AM) using continuous resin flow based mask video projection stereolithography (MVP-SL) According to an aspect, a system for additive manufacturing of an object in three dimensions consisting of an X dimension, a Y dimension, and a Z dimension, the system comprising: a tank configured to contain a liquid resin; a first translation stage coupled with the tank, the first translation stage being configured to move the tank in the X dimension, the Y dimension, or both; a second translation stage coupled with a build platform, the second translation stage being configured to move the build platform in the Z dimension; and a computer control system to cause the second translation stage to elevate the build platform in the Z dimension simultaneously with causing the first translation stage to perform the sliding motion.
Abstract:
A sliding window is used in a projection-based stereolithographic process to more quickly deliver uncured resin after each curing pass. The sliding window may be configured in different patterns, and includes features for delivering resin and exposing resin to curing radiation. The window screen divides the stereolithographic building area divided into two portions, a light exposure portion for resin curing and a liquid resin refilling portion. The light exposure portion is used to selectively solidify liquid resin, while the liquid resin refilling portion is used to quickly refill liquid resin in order to build additional layers. During the layer fabrication process, a mask image is projected to the tank; however, the projection light only passes through the light exposure portion of the window screen.
Abstract:
Methods, systems, and apparatus for multi-scale stereolithography. The apparatus includes a light source for providing a laser beam having a first shape and a first size. The apparatus includes a dynamic aperture having multiple apertures that are of the same or different sizes or shapes. The dynamic aperture is configured to receive the laser beam and modify at least one of the shape or the size of the laser beam. The apparatus includes a platform for holding an object to be printed. The apparatus includes a processor connected to at least one of the light source, the dynamic aperture or the platform. The processor is configured to move the platform to direct the laser beam or direct the laser beam to cure resin onto the object to be printed using a first aperture of the multiple apertures to form the object.
Abstract:
The present disclosure describes systems and techniques relating to computer numerical control (CNC) additive manufacturing. According to an aspect, a tooltip for an additive manufacturing machine includes: an input end configured to receive light from an optical system; and an output end configured to deliver the light to a workpiece on a build platform in the additive manufacturing machine; wherein the output end of the tooltip is configured to be immersed in a liquid resin in a tank of the additive manufacturing machine, and the output end defines a linear opening through which the light is delivered to the workpiece on the build platform.
Abstract:
A sliding window is used in a projection-based stereolithographic process to more quickly deliver uncured resin after each curing pass. The sliding window may be configured in different patterns, and includes features for delivering resin and exposing resin to curing radiation. The window screen divides the stereolithographic building area divided into two portions, a light exposure portion for resin curing and a liquid resin refilling portion. The light exposure portion is used to selectively solidify liquid resin, while the liquid resin refilling portion is used to quickly refill liquid resin in order to build additional layers. During the layer fabrication process, a mask image is projected to the tank; however, the projection light only passes through the light exposure portion of the window screen.