Abstract:
Methods for the photoreduction of molecules are provided, the methods comprising illuminating an amino-terminated diamond surface comprising amino groups covalently bound to the surface of diamond with light comprising a wavelength sufficient to excite an electronic transition defined by the energy band structure of the amino-terminated diamond, thereby inducing the emission of electrons from the amino-terminated diamond surface into a sample comprising molecules to be reduced, wherein the emitted electrons induce the reduction of the molecules to form a reduction product; and collecting the reduction product.
Abstract:
Methods of forming plasmonic diamond films are provided. In an embodiment, such a method comprises forming a first layer of diamond on a substrate; depositing a layer of a metal on a surface of the first layer of diamond to form an as-deposited layer of metal; exposing the as-deposited layer of metal to a plasma treatment to convert the as-deposited layer of metal to a plurality of discrete regions of the metal on the surface of the first layer of diamond; and forming a second layer of diamond on the plurality of discrete regions of metal to form the plasmonic diamond film comprising a plurality of plasmonic nanoparticles.
Abstract:
Provided is an electrode comprising an active material comprising silicon, carbon or both, and a layer comprising active material protecting compounds covalently bound to the surface of the active material, the active material protecting compounds comprising an electrochemically polymerizable group, e.g., an aryl group or a cyclic alkenyl group. Batteries incorporating the electrodes are also provided, e.g. lithium ion batteries.
Abstract:
Methods of forming plasmonic diamond films are provided. In an embodiment, such a method comprises forming a first layer of diamond on a substrate; depositing a layer of a metal on a surface of the first layer of diamond to form an as-deposited layer of metal; exposing the as-deposited layer of metal to a plasma treatment to convert the as-deposited layer of metal to a plurality of discrete regions of the metal on the surface of the first layer of diamond; and forming a second layer of diamond on the plurality of discrete regions of metal to form the plasmonic diamond film comprising a plurality of plasmonic nanoparticles.
Abstract:
Methods for the photoreduction of molecules are provided. The methods use diamond having a negative electron affinity as a photocatalyst, taking advantage of its ability to act as a solid-state electron emitter that is capable of inducing reductions without the need for reactants to adsorb onto its surface. The methods comprise illuminating a fluid sample comprising the molecules to be reduced and hydrogen surface-terminated diamond having a negative electron affinity with light comprising a wavelength that induces the emission of electrons from the diamond directly into the fluid sample. The emitted electrons induce the reduction of the molecules to form a reduction product.
Abstract:
Provided are compositions which may be used in agricultural applications. Also provided are methods of making and using the compositions. In embodiments, a plant fungicide or plant bactericide is provided comprising a nanostructured chemical compound, the chemical compound comprising a metal and a coordinating anion, wherein the nanostructured chemical compound is in the form of a plurality of planar, two-dimensional nanostructures.
Abstract:
Methods for the photoreduction of molecules are provided. The methods use diamond having a negative electron affinity as a photocatalyst, taking advantage of its ability to act as a solid-state electron emitter that is capable of inducing reductions without the need for reactants to adsorb onto its surface. The methods comprise illuminating a fluid sample comprising the molecules to be reduced and hydrogen surface-terminated diamond having a negative electron affinity with light comprising a wavelength that induces the emission of electrons from the diamond directly into the fluid sample. The emitted electrons induce the reduction of the molecules to form a reduction product.
Abstract:
Plasmonic diamond films are provided. In an embodiment, a plasmonic diamond film comprises a plurality of plasmonic nanoparticles encapsulated by diamond and distributed on an underlying surface of diamond. Methods of forming the plasmonic diamond films are also provided.
Abstract:
Provided are compositions which may be used in agricultural applications. Also provided are methods of making and using the compositions. In embodiments, a plant fungicide or plant bactericide is provided comprising a nanostructured chemical compound, the chemical compound comprising a metal and a coordinating anion, wherein the nanostructured chemical compound is in the form of a plurality of planar, two-dimensional nanostructures.
Abstract:
Methods for the photoreduction of molecules are provided, the methods comprising illuminating an amino-terminated diamond surface comprising amino groups covalently bound to the surface of diamond with light comprising a wavelength sufficient to excite an electronic transition defined by the energy band structure of the amino-terminated diamond, thereby inducing the emission of electrons from the amino-terminated diamond surface into a sample comprising molecules to be reduced, wherein the emitted electrons induce the reduction of the molecules to form a reduction product; and collecting the reduction product.