Abstract:
Wireless chip-to-chip communications are methods and devices are disclosed. In an example, a wireless chip-to-chip communication device includes a plurality of chips, each of the plurality of chips having at least one antenna and formed on a multi-layered structure. The multi-layered structure includes first and second absorption layers. The first and second absorption layers are configured to enclose a propagation medium having a given dielectric constant. The plurality of chips are configured to wirelessly communicate with each other via the respective antennas in accordance with a given wireless communication protocol via a direct propagation path within the propagation medium.
Abstract:
Wireless chip-to-chip communications are methods and devices are disclosed. In an example, a wireless chip-to-chip communication device includes a plurality of chips, each of the plurality of chips having at least one antenna and formed on a multi-layered structure. The multi-layered structure includes first and second absorption layers. The first and second absorption layers are configured to enclose a propagation medium having a given dielectric constant. The plurality of chips are configured to wirelessly communicate with each other via the respective antennas in accordance with a given wireless communication protocol via a direct propagation path within the propagation medium.
Abstract:
An apparatus, a method, and a computer program product are provided. The apparatus may be an electronic component. The electronic component includes at least one energy harvester coupled between at least one pair of hot and cold regions of the electronic component and configured to convert thermal energy to electrical energy in order to provide power to at least the electronic component, the at least one energy harvester including a radiative thermal channel or a conductive thermal channel. A first end of the conductive thermal channel is coupled to a first semiconductor material and a second end of the conductive thermal channel is coupled to a second semiconductor material, the first semiconductor material being coupled to the hot region and isolated from the cold region and the second semiconductor material being coupled to the cold region and isolated from the hot region.
Abstract:
An apparatus, a method, and a computer program product are provided. The apparatus may be an electronic component. The electronic component includes at least one energy harvester coupled between at least one pair of hot and cold regions of the electronic component and configured to convert thermal energy to electrical energy in order to provide power to at least the electronic component, the at least one energy harvester including a radiative thermal channel or a conductive thermal channel. A first end of the conductive thermal channel is coupled to a first semiconductor material and a second end of the conductive thermal channel is coupled to a second semiconductor material, the first semiconductor material being coupled to the hot region and isolated from the cold region and the second semiconductor material being coupled to the cold region and isolated from the hot region.