Abstract:
An LED-based spectrophotometer uses a reconstruction algorithm, based on the spectral characteristics of the illumination source and the color sensing system, to convert integrated multiple illuminant measurements from a non-fully illuminant populated color sensor into a fully populated spectral curve using a reference database. The reference database contains training samples that indicate reflectance spectra and their corresponding LED sensor output. A dynamic, Karhunen-Loeve-based (DKL) spectral reconstruction algorithm, used to reconstruct spectra, gives greater importance to the data from the training samples in the neighborhood of the color sample under measurement. This is done using linear operators and basis vectors.
Abstract:
An improved and lower cost color spectrophotometer, especially suitable for on-line color printer color control systems, incorporating a low cost commercial imaging chip, which normally only forms part of a three row, three color, document imaging bar used for imaging documents in scanners, digital copiers, or multifunction products, having multiple photo-sites with at least three different color filters in three rows. This multiple photo-sites chip may be modified to also provide unfiltered photo-sites. This spectrophotometer may have a substantially reduced number of different LED or other spectral illumination sources, one of which may be for white light, yet provide multiple spectral data outputs from the differently filtered photo-sites being simultaneous illuminated by the light reflected from a color test target area which is being sequentially illuminated by the respective limited number of LEDs, enabling broad spectrum information and color control.
Abstract:
An improved and lower cost color spectrophotometer, especially suitable for on-line color printer color control systems, incorporating a low cost commercial imaging chip, which normally only forms part of a three row, three color, document imaging bar used for imaging documents in scanners, digital copiers, or multifunction products, having multiple photo-sites with at least three different color filters in three rows. This multiple photo-sites chip may be modified to also provide unfiltered photo-sites. This spectrophotometer may have a substantially reduced number of different LED or other spectral illumination sources, one of which may be for white light, yet provide multiple spectral data outputs from the differently filtered photo-sites being simultaneous illuminated by the light reflected from a color test target area which is being sequentially illuminated by the respective limited number of LEDs, enabling broad spectrum information and color control.
Abstract:
An LED-based spectrophotometer uses a reconstruction algorithm, based on spectral information of an illumination source and a reference spectrophotometer, to convert integrated multiple illuminant measurements from a non-fully illuminant populated color sensor into a fully populated spectral curve using a reference database. A dynamic, Least Squares-based spectral reconstruction algorithm, used to reconstruct spectra, gives greater importance to the data from the reference database in the neighborhood of the color sample under measurement. This is done using linear operators.
Abstract:
A color spectrophotometer incorporating a low cost commercial imaging chip, which normally forms part of a document imaging bar used for imaging documents in scanners, etc., having multiple photo-sites with three different rows of color filters. Each chip is mounted on the optical axis of an imaging lens system, in the image plane of that lens system, to image the reflected illumination from an illuminated color test target area on the chip. The optical axis of the imaging lens system is oriented at 45null to the illuminated color test patches, and the photodetector chip is physically mounted perpendicular to the plane of the illuminated color test patches. Respective photo-sensor chips and associated 1:1 optics may be mounted on opposing sides of the spectrophotometer physically oriented at 90null to the test target area plane receiving the reflected light from the test target optically oriented at 45null to the illuminated test target.
Abstract:
A printing system accurately prints proprietary marks and selected colors. A dictionary of recognizable patterns and defined colors corresponding to the proprietary marks and selected colors is linked to a user interface wherein a user may designate a location within a document and at least one of the proprietary marks with defined colors from an accessible menu. A processor associates the defined colors with the image at the specified location and generates a printer signal representative thereof. Alternatively, the processor includes a pattern recognizer for identifying recognizable patterns within a document. The patterns have a likeness to defined patterns within a pattern dictionary and can be converted to the defined patterns for display or imaging.
Abstract:
A color spectrophotometer incorporating a low cost commercial imaging chip, which normally forms part of a document imaging bar used for imaging documents in scanners, etc., having multiple photo-sites with three different rows of color filters. Each chip is mounted on the optical axis of an imaging lens system, in the image plane of that lens system, to image the reflected illumination from an illuminated color test target area on the chip. The optical axis of the imaging lens system is oriented at 45null to the illuminated color test patches, and the photodetector chip is physically mounted perpendicular to the plane of the illuminated color test patches. Respective photo-sensor chips and associated 1:1 optics may be mounted on opposing sides of the spectrophotometer physically oriented at 90null to the test target area plane receiving the reflected light from the test target optically oriented at 45null to the illuminated test target.
Abstract:
A low cost yet higher speed color spectrophotometer, especially suitable for on-line color printer color control systems, wherein multiple test patches of different colors may be simultaneously illuminated and substantially simultaneously discretely color analyzed. Reduced numbers of test print sheets, with multiple sets of multiple small adjacent different color test patches, may be used. Reflected images of the multiple different color test patches may be simultaneously focused on different areas of a photodetector chip to expose differently color responsive sets of multiple photo-sites to provide plural discrete color signals for each different color test patch image.