Abstract:
A disaster recovery system, including a target datastore for replicating data written to source datastores, and a checkpoint engine (i) for transmitting, at multiple times, quiesce commands to a plurality of host computers, each quiesce command including a timeout period that is adjusted at each of the multiple times, (ii) for determining, at each of the multiple times, whether acknowledgements indicating that a host has successfully stopped writing enterprise data to the source datastores, have been received from each of the host computers within the timeout period, (iii) for marking, at each of the multiple times, a cross-host checkpoint in the target datastore and reducing the timeout period for the quiesce commands at the next time, if the determining is affirmative, and (iv) for increasing, at each of the multiple times, the timeout period for the quiesce commands transmitted at the next time, if the determining is not affirmative.
Abstract:
A data center for data backup and replication, including a pool of multiple storage units for storing a journal of I/O write commands issued at respective times, wherein the journal spans a history window of a pre-specified time length, and a journal manager for dynamically allocating more storage units for storing the journal as the journal size increases, and for dynamically releasing storage units as the journal size decreases.
Abstract:
A data center for data backup and replication, including a pool of multiple storage units for storing a journal of I/O write commands issued at respective times, wherein the journal spans a history window of a pre-specified time length, and a journal manager for dynamically allocating more storage units for storing the journal as the journal size increases, and for dynamically releasing storage units as the journal size decreases.
Abstract:
A system for disaster recovery including a controller (i) for controlling bandwidth usage of a disaster recovery system in accordance with a plurality of recovery point objectives (RPOs), each RPO designating a maximal time loss constraint for data recovery for an enterprise production system, and a corresponding bandwidth allocation for the disaster recovery system to use in replicating data for the enterprise production system, wherein the RPOs are applied in accordance with a calendar-based schedule of dates and times, and (ii) for issuing an RPO alert when the RPO maximal time loss constraint for a current date and time is not satisfied.
Abstract:
A disaster recovery system, including a target datastore for replicating data written to source datastores, and a checkpoint engine (i) for transmitting, at multiple times, quiesce commands to a plurality of host computers, each quiesce command including a timeout period that is adjusted at each of the multiple times, (ii) for determining, at each of the multiple times, whether acknowledgements indicating that a host has successfully stopped writing enterprise data to the source datastores, have been received from each of the host computers within the timeout period, (iii) for marking, at each of the multiple times, a cross-host checkpoint in the target datastore and reducing the timeout period for the quiesce commands at the next time, if the determining is affirmative, and (iv) for increasing, at each of the multiple times, the timeout period for the quiesce commands transmitted at the next time, if the determining is not affirmative.
Abstract:
A data center for data backup and replication, including a pool of multiple storage units for storing a journal of I/O write commands issued at respective times, wherein the journal spans a history window of a pre-specified time length, and a journal manager for dynamically allocating more storage units for storing the journal as the journal size increases, and for dynamically releasing storage units as the journal size decreases.
Abstract:
An enterprise disaster recovery system, including at least one data disk, a processor for running at least one data application that reads data from the at least one data disk and writes data to the at least one data disk over a period of time, a recovery test engine that (i) generates in parallel a plurality of processing stacks corresponding to a respective plurality of previous points in time within the period of time, each stack operative to process a command to read data at a designated address from a designated one of the at least one data disk and return data at the designated address in an image of the designated data disk at the previous point in time corresponding to the stack, and (ii) that generates in parallel a plurality of logs of commands issued by the at least one data application to write data into designated addresses of designated ones of the plurality of data disks, each log corresponding to a respective previous point in time, wherein the plurality of previous points in time within the period of time are specified arbitrarily by a user of the system.
Abstract:
A data center for data backup and replication, including a pool of multiple storage units for storing a journal of I/O write commands issued at respective times, wherein the journal spans a history window of a pre-specified time length, and a journal manager for dynamically allocating more storage units for storing the journal as the journal size increases, and for dynamically releasing storage units as the journal size decreases.
Abstract:
A disaster recovery system, including a target datastore for replicating data written to source datastores, and a checkpoint engine (i) for transmitting, at multiple times, quiesce commands to a plurality of host computers, each quiesce command including a timeout period that is adjusted at each of the multiple times, (ii) for determining, at each of the multiple times, whether acknowledgements indicating that a host has successfully stopped writing enterprise data to the source datastores, have been received from each of the host computers within the timeout period, (iii) for marking, at each of the multiple times, a cross-host checkpoint in the target datastore and reducing the timeout period for the quiesce commands at the next time, if the determining is affirmative, and (iv) for increasing, at each of the multiple times, the timeout period for the quiesce commands transmitted at the next time, if the determining is not affirmative.
Abstract:
A system for disaster recovery including a controller (i) for controlling bandwidth usage of a disaster recovery system in accordance with a plurality of recovery point objectives (RPOs), each RPO designating a maximal time loss constraint for data recovery for an enterprise production system, and a corresponding bandwidth allocation for the disaster recovery system to use in replicating data for the enterprise production system, wherein the RPOs are applied in accordance with a calendar-based schedule of dates and times, and (ii) for issuing an RPO alert when the RPO maximal time loss constraint for a current date and time is not satisfied.