Abstract:
An autothermal reforming catalytic structure for generating hydrogen gas from liquid hydrocarbons, steam and an oxygen source. The autothermal reforming catalytic structure includes a support structure and nanosized mixed metal oxide particles dispersed homogenously throughout the support structure.
Abstract:
An axial/radial—or radial/flow catalytic reactor has inlet and outlet ports and a bed of particulate catalyst disposed as e.g. a cylinder or cone round a central region communicating with one of the ports. For at least part of the height of the catalyst bed, the exterior surface of the catalyst bed has a diameter less than that of the reactor thus leaving space between the exterior surface of the catalyst bed and the interior walls of the reactor. This space is filled with a particulate material presenting less resistance to flow than the catalyst particles.
Abstract:
A process for reacting feed in and an apparatus comprising a radial flow reactor including a first catalyst bed disposed between an outer wall and a centerpipe of the vessel and a second catalyst bed disposed within a centerpipe. Also disclosed is a method of loading catalyst into the radial flow reactor.
Abstract:
The present invention provides a reactor system having: (1) a plurality of reactors connected in fluid flow communication and having at least one pair of reactors separated by an interstage position; (2) a line for supplying a reactant feed stream separately to an inlet of more than one of the plurality of reactors; and (3) a diverter in fluid communication with the interstage position and capable of directing a first portion of a product stream exiting one reactor in said pair of reactors to a first location and a second portion of the product flow stream to an inlet of another reactor in said pair of reactors.
Abstract:
Disclosed is a process for reacting feed in and an apparatus comprising a radial flow reactor including a first catalyst bed disposed between an outer wall and a centerpipe of the vessel and a second catalyst bed disposed within a centerpipe. Also disclosed is a method of loading catalyst into the radial flow reactor.
Abstract:
In this process, during at least one phase of the treatment cycle, the gas outflow is increased or decreased locally in at least one marginal region of the packing. Application to drying/CO2 removal of atmospheric air intended to be distilled, or to the separation of gaseous mixtures by pressure modulated adsorption.
Abstract:
In this process, during at least one phase of the treatment cycle, the gas outflow is increased or decreased locally in at least one marginal region of the packing. Application to drying/CO2 removal of atmospheric air intended to be distilled, or to the separation of gaseous mixtures by pressure modulated adsorption.
Abstract:
A plant for the separation of gases by adsorption, which is of the PSA type, includes, in a container (1) of vertical axis, at least one annular bed of particulate material (5, 6) supported on a lower wall (9) which is itself supported by a perforated prismatic wall (11) bearing on a domed end (2) of the container. A lower wall (9), advantageously in the form of a very wide inverted V (9A, 9B), has no part forming an angle (.alpha., .beta.) in excess of 15.degree. with the horizontal. The plant is useful in the separation of gases from air.
Abstract:
Particle loader assembly for loading particles into a vessel to form a particle bed comprising inner and outer radially disposed concentric layers of particles the inner layer containing at least one type of particle of different granulometry or composition or both granulometry and composition from a type of particle contained in the outer layer.
Abstract:
An installation for the treatment of fluid having a receptacle (1) defining a non-vertical portion of a path for fluid through at least two adjacent masses (A; B; C) of particulate materials, typically different from each other, each mass being in direct contact with its neighbor or neighbors, without the interposition of a separating grid. The installation is particularly useful for the separation or drying of air.