Abstract:
An exemplary embodiment of the present invention provides an electrostatic metal porous body forming apparatus including: a transfer module transferring a porous body substrate; and a coating module coating a metal powder on the porous body substrate, wherein the transfer module includes a substrate supporter fixing the porous body substrate while the porous body substrate is transferred, and wherein the coating module includes: an electrifier including a first electrode electrifying the metal powder, a second electrode facing the first electrode, a first power supplier connected with the first electrode supplying electricity to the first electrode, and a second power supplier connected with the second electrode supplying electricity electrified with an opposite charge to a charge caused by the electrification of the first electrode to the second electrode, and generating a pulse type of voltage; and a metal powder supplier including a metal powder vessel storing the metal powder therein and supplying the metal powder to the outside, and an outlet separately disposed above or below the porous body substrate injecting the metal powder, and transferring or injecting the metal powder that is electrified and coated by the electrifier.
Abstract:
The invention relates to a device for conveying coating powder from a powder container. The powder conveying device has a powder conveying pipe having a powder inlet, by means of which coating powder can be fed from a powder container to the powder conveying pipe, in particular by means of suction. Furthermore, a powder conveying pipe retainer is provided in order to retain the powder conveying pipe. The powder conveying pipe can be preferably optionally moved in relation to the powder conveying pipe retainer in the longitudinal direction of the powder conveying pipe, wherein in order to clean the powder conveying pipe, the powder inlet of the powder conveying pipe can be closed and a compressed air line can be connected to the powder pipe.
Abstract:
A powder distribution device comprises a distribution chamber having a cylindrical shape, a powder introduction pipe extending along a central axis of the distribution chamber and adapted to introduce powder to an inside of the distribution chamber through an introduction port facing the distribution chamber, swirling gas flow generating unit that generates a swirling gas flow flowing about the central axis of the distribution chamber in the distribution chamber, a plurality of powder distribution paths communicating with an outer peripheral surface of the distribution chamber, and a slit formed at a communicating portion between each of the plurality of powder distribution paths and the distribution chamber.
Abstract:
The invention relates to a device for conveying coating powder from a powder container. The powder conveying device has a powder conveying pipe having a powder inlet, by means of which coating powder can be fed from a powder container to the powder conveying pipe, in particular by means of suction. Furthermore, a powder conveying pipe retainer is provided in order to retain the powder conveying pipe. The powder conveying pipe can be preferably optionally moved in relation to the powder conveying pipe retainer in the longitudinal direction of the powder conveying pipe, wherein in order to clean the powder conveying pipe, the powder inlet of the powder conveying pipe can be closed and a compressed air line can be connected to the powder pipe.
Abstract:
A bakery dough flour applicator 10 for applying flour 12 to a dough piece 22 as the dough piece 22 travels along a processing path 134 includes a hopper 32 for supplying flour 12 and a transfer assembly 54 for providing flour 12 from the hopper 32 to an aerator 34 which creates an airborne flow of flour 40. The airborne flow of flour 40 is delivered to the interior of an enclosure 130 disposed about the dough processing path 134 through a plurality of spray nozzles 44 which direct the airborne flow of flour 40 to a dough piece 22 travelling through the enclosure 130 along the processing path 134 so that flour 12 from the airborne flow 40 adheres to the exterior surface of the dough piece 22. Flour 12 that does not adhere to a dough piece 22 is collected and filtered and provided back to the hopper 32 for later use.
Abstract:
A device for distributing pulverulent solids in suspension in a gas, for the purpose of depositing a coating, notably by pyrolysis, on a moving substrate (1), includes a distribution nozzle (24), the walls of which define a cavity (11) which terminates in a longitudinal distribution slit (13) and a principal powder feed duct (6) equipped with a distribution portion (7). A plurality of secondary powder feed ducts (8), connected to this principal duct by the distribution portion, enables the cavity (11) of the nozzle (24) to be supplied with powder over its entire length. At least a portion of the secondary ducts (8) is equipped with at least one pneumatic device adapted for modulating the flow rate of the powder-gas suspension which each of the secondary ducts concerned is intended for carrying.
Abstract:
An electrostatic powder spray coating system for car bodies is disclosed. Above the car bodies (14) are moved through the cabin and from which the spray organs (94) are supplied with powder. The powder container (92) is supplied with fresh powder and recycled powder from a supply container (36). Short paths between the powder container and spray organs allow precise metering and therefore a good coating quality. The spray coating is applied within an arrangement of inner and outer cabins which allows pressurizing of space between the cabins to prevent ingress of atmospheric air into and egress of powder out of the system.
Abstract:
An improved drive system for pneumatic spreader systems for effective distribution of particulate material onto agricultural fields from a plurality of elongated delivery tubes or booms. The improved drive means of the present invention is utilized to power the lift-auger bringing particulate material from the hopper to the distributor head, and is provided with dual operating parameters or modes, the first mode being low-speed high-torque, the second mode being high-speed low-torque. The low-speed high-torque mode is designed to provide power to initially "break-loose" or otherwise activate the rotation of the auger, with the high-rotational speed being utilized for normal operation. The system is designed to automatically convert from the low-speed mode to the high-speed mode after only a short interval of time, such as may be required to complete from between 1 and 3 revolutions of the lift-auger.
Abstract:
Plural powders are supplied to one or more torches from different fluidized-powder zones, and plural independent lines through each of these zones enable each torch to be supplied with one or more independent lines of powder flow to the nozzle-discharge region of each torch.
Abstract:
Apparatus and method are provided for the continuous manufacture of self-locking internally threaded fasteners having a locking body or patch comprised of resilient thermoplastic material, applied to the fastener in powder form. A support member having a plurality of cavities for receiving said fasteners, and a nozzle associated with each of said cavities, is moved along a path through a plurality of locations wherein the fastener is deposited at a cavity aligned with a respective nozzle at a first location, material is forced through the nozzle onto the fastener at a second location, the fasteners are removed from the respective support at a third location, and the nozzles are purged of material at a fourth location prior to the initiation of a subsequent sequence of operations by the apparatus.