Abstract:
A method of controlling a reciprocating internal combustion engine comprising: a cylinder defining a cavity having a first end and a second end; and a piston moveable within the cavity of the cylinder between the first end and the second end, the method comprising: receiving at least a first signal; determining a quantity of liquid air to be injected using at least the received first signal; controlling injection of the determined quantity of liquid air into the first end of the cavity at a first time when the piston is closer to the first end than the second end.
Abstract:
Systems and methods are provided for operating an internal combustion engine in a two-stroke mode or a four-stroke mode to achieve greater fuel efficiency and minimize emissions. The system comprises a mode-adaptable valve; a valve rocker arm to actuate opening and closing of the mode adaptable valve; a cam follower of a first cam for carrying out a two-stroke mode; a cam follower of a second cam for carrying out a four-stroke mode; and a pin to mechanically couple the valve rocker arm to the cam follower of the first cam or the cam follower of the second cam. Coupling the valve rocker arm to the cam follower of the first cam enables a two-stroke mode and coupling the valve rocker arm to the cam follower of the second cam enables a four-stroke mode.
Abstract:
A combined-cycle combustion control type three-cylinder engine includes: a cylinder block; and cylinders arranged in a row in the cylinder block and consisting of first, second, and third cylinders so that four-cycle combustion is performed in two of the first, second, and third cylinders and two-cycle combustion is performed in the remaining cylinder. A crankshaft is provided in first, second, and third pistons and converting reciprocating motions of the respective first, second, and third cylinders into rotational motions. A camshaft receives a rotational force from the crankshaft to control intake and exhaust timings for each of the first, second, and third cylinders
Abstract:
An internal combustion engine comprising at least one pair of opposed, reciprocating pistons forming a combustion chamber therebetween a crankshaft driven by the pistons via respective drive linkages. The outer piston furthest from the crankshaft comprises a skirt extending from its perimeter towards the crankshaft to form a cylinder within which the other, inner piston reciprocates.
Abstract:
A cylinder head for an internal combustion engine has a body, a rigid center spacedly surrounded by the body, an annular outer valve seat on the body, and an annular inner valve seat on the center. A ring-shaped valve has an outer seat face and an inner seat face and is displaceable along an axis into a closed position bearing on the outer valve seat with the outer seat face and on the inner valve seat with the inner seat face. The inner valve seat or outer valve seat is slidable axially. A seal member set in a groove in the center or in the body engages the one slidable seat. At least one biasing member connected to the one slidable valve seat urges same toward the ring-shaped valve.
Abstract:
A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses during an exhaust stroke, and a blowdown exhaust valve that expels blowdown exhaust gasses during recompression. An intake line directs air into the combustion chamber, and an exhaust line directs exhaust gasses from combustion chamber. A blowdown exhaust line directs blowdown exhaust gasses out of the combustion chamber and into the intake line. The blowdown exhaust gasses are expelled through the blowdown exhaust valve during recompression, and exhaust gasses are expelled through the exhaust valve during the exhaust stroke.
Abstract:
In a two-stroke opposed-piston engine, a ported cylinder with a pair of opposed pistons is equipped with an engine brake including an engine braking valve that can be opened to release air from the cylinder as the pistons cycle between BDC and TDC positions.
Abstract:
In a reciprocating internal combustion engine operating on a two-stroke cycle, the power stroke is followed by an abbreviated exhaust phase which ends with a portion of the exhaust products retained for recirculation, then by an abbreviated intake phase wherein pressurized new air is introduced, then by an abbreviated compression phase which completes the cycle. Fuel injection and ignition then initiate the next power stroke. Intake and exhaust take place through cylinder-head valves. The combination of a full expansion stroke with an abbreviated compression phase can offer efficiency superior to that of existing engines. Due to flexibility in the amount of pressurized air that can be introduced during intake, and because of the recirculation of relatively large amounts of exhaust gas, cylinder temperatures can be reduced, as can the emission of undesirable exhaust products.
Abstract:
Improvements in a gas powered engine. Said improvements include use of a piston with a fixed piston arm that extends through a seal in the lower portion of the cylinder. The piston arm operates on an elliptical crank that drives the output shaft. Valves that move air and exhaust into and out of the pistons are lifted by a cam located on the crank. A unique oil injector passes oil to the piston and the cylinder wall. An energy recovery unit recovers energy from the cooling system and from the exhaust system.
Abstract:
Torque multiplier engines, and associated methods and systems, are disclosed herein. An internal combustion engine in accordance with a particular embodiment can include a connecting rod operably coupling a pair of opposing pistons. The engine can further include a first bearing coupled to the connecting rod and positioned to engage a first cam groove of an inner cam drum. A second bearing coupled to the connecting rod can be positioned to engage a second cam groove on an outer cam drum. The first and second bearings can translate linear motion of the opposing pistons to rotation of the cam drums.