Abstract:
A spring winding device, a counterbalancing force adjustment device for a counterbalancing mechanism, and a method of adjusting an amount of force stored in a spring of a counterbalancing mechanism are provided. The spring winding device includes a support bracket, a worm gear, and a drive gear. The worm gear is rotatably coupled to the support bracket and includes a mount portion for coupling a first end cone thereto. The drive gear is rotatably disposed adjacent the support bracket and is drivingly engaged with the worm gear. A rotation of the drive gear causes the worm gear to rotate within the support bracket. The spring winding device does not require pretensioning using winding rods, maintains rigidity and alignment when a counterbalancing force is applied, and decreases a cost and a complexity of the counterbalancing mechanism.
Abstract:
In accordance with embodiments, there are provided systems and method for In accordance with embodiments, there are provided systems and method for generating mechanical movement that includes a resilient member having an original shape. A bulwark is connected to the resilient member. A system is provided to selectively apply a torsional force to the resilient member using capillary forces to rotate the resilient member with respect to the bulwark. This places the resilient member in a deformed shape. The system also selectively terminates the capillary forces allowing the resilient member to return to the original shape. These and other embodiments are described more fully below.
Abstract:
There is provided a power source device capable of obtaining power not only when springs or the like return but also when a handle for winding up the springs or the like are operated. The power source device comprises a main shaft connected to both the handle and a main power generation device, an auxiliary shaft connected to an auxiliary power generation device arranged side by side in parallel with the main shaft, the main spring and the auxiliary spring requiring less load to wind up than the main spring being installed between the main shaft and the auxiliary shaft via drums such that accumulation and release of elastic force of the springs are alternated on both shafts, wherein when the main shaft is normally rotated by the handle, elastic force accumulated in the auxiliary spring is applied in the direction of rotation of the main shaft as releasing force.
Abstract:
A spring device includes an intermittent accumulator and kinetics release trigger that gradually winds up to accumulate kinetic energy (kinetics) as driven by manual or other random intermittent kinetics, and drives a kinetics release control to trigger the spring to release kinetics to drive a load once the kinetics supplied to the spring is accumulated to a preset value.
Abstract:
A sonically controlled motor has a rotating shaft and an escapement selectively allowing or denying rotation there-of. An acoustic element cooperates with the escapement such that selective operation of the acoustic element selectively allows or denies rotation of, or controls the rotational speed of the shaft. A machine, such as a toy, having one or more moving elements may be controlled by the motor such that selective operation of the acoustic element selectively allows or denies movement of the machine. Alternation of the volume and/or frequency of the acoustic element may be used to alter the operation of the motor, or the motor may be operated according to the beat and qualities of music. The motor may be operated by remote control of the acoustic element.
Abstract:
The present invention provides a power generating system by two equal weights and or leaf springs for driving a vehicle and AC generator. This system includes two levers are be suspended by an U-joint for each lever, so each lever is free to move reciprocally to up and down. A weight with or without leaf springs installed to the long arm of each lever. Upon the movement of long arm of one lever from up to down, the short arm of this lever imparts rotary motion to a gearbox having an automatic transmission mechanism for imparting kenetic energy to the second lever through a mechanical linkage for lift the second lever's long arm from down to up and so on the reciprocative movement of the two levers is continuous on the running of the system. Two arms with two ratchet means can be used instead of said two levers.
Abstract:
A winch 10 has a drum 26 that winds and unwinds a cable 28 in response to winding and unwinding of tethers 30 about an axle 24. The tethers 30 are connected to telescopic spring devices 46 with staged concentric springs 48 that store energy, and a brake 45 is releasable to permit the drum 26 to rotate under the force of the stored energy. The drum 26 has a diameter that is greater than a diameter of the axle 24, thereby producing a mechanical advantage. The cable 28 is also connected to a passenger carriage 201 of an amusement ride 200 that travels under the force of the stored energy.
Abstract:
The present invention is related to a driving structure of the external rotary disk of the crystal ball the inner rim the external rotary disk of which is provided with two set of gears which is engaged with the external rotary disk. The diameters of center gear for each set of the gears are different with each other, wherein the center gears are formed an unidirectional device with the axle of the spring. Therefore, the external rotary disk is driven by the dynamic force of the spring of the music box through one of the gears sets, on the contrary, the external rotary disk can be rotated with a preset direction, thus the other gear set will be driven to rapidly tightly wind the spring of the music box.
Abstract:
In a spring operated mechanism, the recharge device (1) is adapted to wind the spring (4) during idle times when the drive mechanism (4,16) is not operating. The recharge device has a lever member (48,50) operated by a shape memory alloy member (46) and adapted to turn a gear (8,26) for winding the spring.
Abstract:
A decoupling and speed governing mechanism is disclosed for a spring returned drive train driven by a stepper motor. A pinion assembly in the drive train is rotatably coupled to the rotor by dogs on the assembly which engage spokes in a rotor in the motor when the assembly is in a first position along the axis of the rotor. The pinion assembly also includes weighted shoes which move outwardly when the assembly rotates at greater than a predetermined speed to frictionally engage an internal drum surface in the rotor to govern the drive train speed when the assembly is in a second axial position relative to the rotor.