Abstract:
A pyranometer is provided which can measure the precise amount of solar radiation/solar irradiance continuously and stably while suppressing the generation of dew or frost by a simple configuration even in changing external environment. A pyranometer includes: a housing having an opening, and having thermal conductivity; a dome provided at the opening, and having light transmittance; a sensor part provided in an internal space formed by the housing and the dome, and for measuring an intensity of a sunlight made incident through the dome; and a heat generating element provided heat conductably to a part of the housing, opposite to the opening across the internal space.
Abstract:
The invention provides a pyranometer with a fast response time, a reduced offset amount, and reduced impacts from harsh outside environment and an enhanced long-term stability, as well as an excellent cosine response. The pyranometer has: a silicon-based thermopile sensor, which is sealed airtight in a CAN package and positioned opposed to the receiving surface of the thermopile sensor; and diffusing member that is positioned so as to be opposed to a receiving surface of the thermopile.
Abstract:
A shadow band assembly includes a platform and an arcuate shadow arm extending upward from the platform and terminating in a free end above the platform. A sun sensor mounting location is located below the free end of the shadow arm. The arm is preferably further supported by a vertical strut. According to other embodiments, the arm is hollow and contains a fluid conduit and/or an electrical cable. A sun sensor may be mounted on top of the free end of the arm and a fluid nozzle may be mounted under the free end. A shadow band pyranometer includes the shadow band assembly, a sun sensor mounted at the mounting location and a motor drive coupled to the platform for azimuth tracking. Additional sensors with zenith tracking may also be provided.
Abstract:
An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.
Abstract:
One embodiment provides a pyranometer, including: a dome; a thermopile-based sensor comprising a receiving surface; a diffusor configured to diffuse radiation external to the pyranometer and passing through the dome, toward the receiving surface of thermopile-based sensor; and at least one optical filter arranged in an optical path of the radiation in front of the receiving surface of the thermopile-based sensor so as to modify the spectral composition of the radiation measured by the thermopile-based sensor. Other aspects are described and claimed.
Abstract:
One embodiment provides a pyranometer, including: a dome enclosing a cavity; at least one light emitting source arranged such that light exterior to the dome does not directly impinge on the at least one light emitting source; a diffusor; wherein the at least one light emitting source is configured to emit light substantially directed to a portion of the diffusor, and wherein the diffusor is configured to diffuse the light emitted from the at least one light emitting source on an inner surface of the dome; and one or more first light detecting sensors arranged in the cavity and configured to measure an intensity of the light reflected from the dome and impinging on the one or more first light detecting sensors. Other aspects are described and claimed.
Abstract:
The invention provides a pyranometer with a fast response time, a reduced offset amount, and reduced impacts from harsh outside environment and an enhanced long-term stability, as well as an excellent cosine response. The pyranometer has: a silicon-based thermopile sensor, which is sealed airtight in a CAN package and positioned opposed to the receiving surface of the thermopile sensor; and diffusing member that is positioned so as to be opposed to a receiving surface of the thermopile.
Abstract:
A solar monitoring system for measuring solar radiation intensity comprising a tracking unit having two-axis movement comprising, an image capturing head mounted with first and second irradiation measuring units, and a controller. The first irradiation measuring unit comprises a direct normal irradiance (DNI) sensor and the second irradiation measuring unit includes a diffuse horizontal irradiance (DHI) sensor and a global horizontal irradiance (GHI) sensor. The controller receives inputs from the sensors or a software program configured to control orientation of the image capturing head so that the DNI sensor is always exposed to the sun, and the shading disc is always directly between the DHI sensor and the sun.
Abstract:
A shadow band assembly includes a platform and an arcuate shadow arm extending upward from the platform and terminating in a free end above the platform. A sun sensor mounting location is located below the free end of the shadow arm. The arm is preferably further supported by a vertical strut. According to other embodiments, the arm is hollow and contains a fluid conduit and/or an electrical cable. A sun sensor may be mounted on top of the free end of the arm and a fluid nozzle may be mounted under the free end. A shadow band pyranometer includes the shadow band assembly, a sun sensor mounted at the mounting location and a motor drive coupled to the platform for azimuth tracking Additional sensors with zenith tracking may also be provided.
Abstract:
A device comprises a platform constructed and arranged to be mounted to one or more solar array modules and one or more solar irradiance sensors on the platform configured to receive incident solar energy, the one or more solar irradiance sensors oriented on the platform so that the received incident solar energy is comparable to that received by the solar array modules, the one or more solar irradiance sensors providing solar irradiance signals in response to the incident solar energy. A processor is on the platform, the processor configured to receive the solar irradiance signals and, in response, generating a performance reference metric based on the solar irradiance signals, the performance reference metric related to the expected performance of the one or more solar array modules to which the platform is mounted. A transmitter is on the platform, the transmitter configured to periodically transmit the performance reference metric to a receiver.