Abstract:
Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O2 dissolved in the liquid, CO2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter α(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.
Abstract:
Apparatus is disclosed for remotely measuring the diffuse attenuation coefficient K of ocean water from a platform such as an aircraft flying over the ocean. A pulsed laser beam is directed as a probe beam from the aircraft into the water to produce therein Brillouin backscattering signals which emanate back up through the water to the aircraft. An optical receiver in the aircraft receives and processes those backscattered signals. A very narrow optical bandpass filter passes the Brillouin signals to a photodetector, a digitizer and a data processor, the latter being programmed to compute the diffuse attenuation coefficient at predetermined depths and at the Brillouin wavelength. Measurements of the diffuse attenuation coefficient at various depths is accomplished by sampling and digitizing the Brillouin signals at predetermined intervals, each interval corresponding to a depth beneath the surface of the water. A preferred embodiment of the invention features similar apparatus having two signal-processing channels for simultaneously deriving the diffuse attenuation coefficient at two wavelengths by analyzing the upwelling Brillouin (blue) and Raman (green) backscatter generated by the probe beam. An alternate embodiment of the invention features apparatus for measuring the diffuse attenuation coefficient K of ocean water from a submerged submarine.
Abstract:
An autonomous biobuoy system and methods for detecting characteristics of a marine environment, the system involving: a light source comprising a blue light emitting diode; a detector assembly for detecting the at least one characteristic of the marine environment, the detector assembly having a single photodiode configured to detect stimulated bioluminescence and transmissivity in response to the light source, the detector assembly configured to generate at least one detector assembly output signal responsive to at least one detected characteristic; and a transmitter coupled with the detector assembly for transmitting the at least one detector assembly output signal.
Abstract:
Methods and systems for detecting oil proximate to a body of ice is disclosed herein. An example system includes an energy emitter disposed proximate to a first surface of a body of ice. An energy detector is disposed proximate to a second surface of the body of ice. The energy detector is used to map a distribution of oil proximate to the body of ice based, at least in part, on differences in energy transmitted through the body of ice.
Abstract:
The system enables remote inspection of an object, such as an underwater steel pile, using a plurality of video cameras. The cameras are positioned on a frame along a plane substantially perpendicular to the axis of the object and spaced apart so as to enable inspection of the circumference of the object. Moving the frame along the surface of the object enables a video of the entire surface area of the object to be made. A plurality of wheels are mounted to the frame to provide rolling contact with the surface of the object and to cause the cameras to remain a fixed distance from the surface of the object. A plurality of springs are mounted between the frame and the wheels to further ensure smooth movement of the frame. A plurality of lights mounted to the frame illuminate the surface of the object during the Inspection process.
Abstract:
A system for monitoring at least one parameter of a fluid contained in a container includes a measuring device based on near-infrared spectroscopy designed to be submerged in the cited fluid to be monitored and to take measurements of the fluid. The measuring device includes a measuring area. The monitoring system includes a flotation system joined to the measuring device. The flotation system is arranged, during the use of the monitoring system, floating on the fluid to be monitored such that the measuring area of the measuring device is submerged in the fluid at a constant depth with respect to the level of fluid in the container, such that all the measurements taken by the measuring device are taken at the same depth with respect to the level of the fluid.
Abstract:
The present invention relates to optical measurement devices and systems, and methods of using these systems and devices, and more particularly but not exclusively it relates to a system and apparatus adapted to measure optical properties in-situ.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
The present invention relates to a system for in-situ measurement of an apparent spectrum of a water body. The system comprises a floating device, and an optical sensing and conduction device, an electronic measurement device, a control circuit and a power supply device which are loaded on the floating device. The floating device comprises a floating body ring and an optical probe mounting frame which is provided on the floating body ring in a direction perpendicular to a ring surface. The optical probe mounting frame comprises a vertical mounting assembly and a horizontal connecting assembly. The horizontal connecting assembly is provided radially along the ring shape of the floating body ring, one end of the horizontal connecting assembly being connected to the vertical mounting assembly, and the other end thereof being connected to the floating body ring, such that the vertical mounting assembly is overhung outside the ring surface of the floating body ring, and meanwhile a vertical projection of the vertical mounting assembly is located in the center of the ring surface. A ratio of an inner diameter to an outer diameter of the floating body ring is 0.80 to 0.85. The floating body ring is provided with a water-tight cavity which provides flotage for the whole floating device and used for loading a necessary electronic device and a necessary power supply assembly. An optical probe is vertically mounted on the optical probe mounting frame. The device for in-situ observation of the apparent spectrum of the water body disclosed by the present invention may be used for directly measuring a water-leaving radiance Lw of the water body, and can furthest reduce the method defects, personal errors and device errors. The precision of a remote sensing reflectivity Rrs finally observed of the water body is improved remarkably, and the operations are simple.
Abstract:
Methods and systems for detecting oil proximate to a body of ice is disclosed herein. An example system includes an energy emitter disposed proximate to a first surface of a body of ice. An energy detector is disposed proximate to a second surface of the body of ice. The energy detector is used to map a distribution of oil proximate to the body of ice based, at least in part, on differences in energy transmitted through the body of ice.