Abstract:
A flat panel field emission device includes a black matrix formed from an electrically insulative material such as praseodymium-manganese oxide. The insulative black matrix increases image contrast and reduces power consumption. For field emission devices which utilize a switched anode for selectively activating pixels, the insulative material reduces or eliminates problems associated with short circuiting of the pixels.
Abstract:
The present invention relates to a backplate for a PDP and a fabrication method of the same capable of uniformly coating the phosphor material in the inner portion of the discharge cell of the PDP based on the height of the barrier rib(the backplate and the space surrounded by the barrier ribs). In one embodiment of the present invention, the lubricant material may be coated on the substrate having the barrier ribs, and then the lubricant thin film is formed, and then the phosphor material is coated on the lubricant thin film. In another embodiment of the present invention, the phosphor material is coated on the substrate having the barrier ribs, and then a certain compression gas is sprayed so that the phosphor material is uniformly coated on the barrier ribs and on the bottom portion of the backplate in which the barrier ribs are installed, whereby it is possible to uniformly coat the phosphor material at a certain thickness irrespective of the height of the barrier ribs.
Abstract:
An illuminating device includes a fluorescent lamp including a blue phosphor and a red phosphor applied on an inner surface, the fluorescent lamp emitting blue light and red light from the blue phosphor and the red phosphor, respectively; and a green phosphor layer disposed outside the fluorescent lamp, the green phosphor layer containing a green phosphor containing Eu2+ or Ce3+ as a luminescent center. Green light emitted from the green phosphor excited by the blue light is mixed with the red light and the blue light so that white light is emitted from the illuminating device.
Abstract:
An electroluminescent apparatus utilizes a replaceable electroluminescent element which is compressed between two electrodes that are positioned within a resealable housing which may be opened and closed so that a used electroluminescent element may be removed from between the electrodes and replaced at the end of its usable lifetime. The housing has front and rear panels associated with the respective electrodes, at least one of the panels being transparent. The apparatus may include an inflatable compressing structure, an alignment structure within the housing for alignment of the electroluminescent sheet, or transparent electrodes, and various drivers may be used allowing for monochrome or color displays. The housing may have an envelope configuration, or the electroluminescent element can have a configuration of a roll of sequential electroluminescent sheets or a tiled structure allowing for larger electroluminescent displays, within the scope of the present invention.
Abstract:
A flat panel field emission device includes a black matrix formed from an electrically insulative material such as praseodymium-manganese oxide. The insulative black matrix increases image contrast and reduces power consumption. For field emission devices which utilize a switched anode for selectively activating pixels, the insulative material reduces or eliminates problems associated with short circuiting of the pixels.
Abstract:
A Plasma Display Panel (PDP) that can be easily manufactured and reduces damages caused by thermal expansion includes: a first substrate and a second substrate arranged opposite to and spaced apart from each other; an electrode sheet arranged between the first substrate and the second substrate and having barrier ribs partitioning discharge cells and pairs of discharge electrodes adapted to cause a discharge in the discharge cells; and fixing members arranged on sides of the electrode sheet and adapted to fix the electrode sheet between the first substrate and the second substrate.
Abstract:
A LED package structure capable of adjusting the spatial color uniformity and the light distribution curve includes a substrate unit, a light-emitting unit, a transparent package unit, and a phosphor package unit. The light-emitting unit includes at least one light-emitting element for generating a light-emitting source to show a predetermined light distribution curve. The transparent package unit includes a transparent package resin body covering the light-emitting element. The phosphor package unit includes a phosphor package resin body covering the transparent package resin body. Hence, when the light-emitting source generated by the light-emitting element is transformed into a light-projecting source through the transparent package resin body and the phosphor package resin body sequentially, and the spatial color uniformity and the light distribution curve of the light-projecting source can be adjusted according to the phosphor package resin body having a non-uniform thickness.
Abstract:
An illuminating device includes a fluorescent lamp including a blue phosphor and a red phosphor applied on an inner surface, the fluorescent lamp emitting blue light and red light from the blue phosphor and the red phosphor, respectively; and a green phosphor layer disposed outside the fluorescent lamp, the green phosphor layer containing a green phosphor containing Eu2+ or Ce3+ as a luminescent center. Green light emitted from the green phosphor excited by the blue light is mixed with the red light and the blue light so that white light is emitted from the illuminating device.
Abstract:
An electron emission device includes first and second substrates facing each other with a predetermined distance therebetween, and an electron emission region formed on the first substrate. First and second electrodes are placed on the first substrate while being insulated from each other to control an electron emission of the electron emission region. An insulating layer is disposed between the first and second electrodes. An anode electrode is formed on the second substrate. A phosphor layer is formed on a surface of the anode electrode. The insulating layer has a multiple-layered structure including at least two layers differing from each other in electro-physical property.
Abstract:
A flat panel field emission device includes a black matrix formed from an electrically insulative material such as praseodymium-manganese oxide. The insulative black matrix increases image contrast and reduces power consumption. For field emission devices which utilize a switched anode for selectively activating pixels, the insulative material reduces or eliminates problems associated with short circuiting of the pixels.